Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +215 -0
- requirements.txt +11 -0
app.py
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
|
3 |
+
import os
|
4 |
+
import uuid
|
5 |
+
import nltk
|
6 |
+
import trafilatura
|
7 |
+
import chromadb
|
8 |
+
import tiktoken
|
9 |
+
import gradio as gr
|
10 |
+
|
11 |
+
from langchain_core.prompts import ChatPromptTemplate
|
12 |
+
from langchain_core.runnables import RunnableLambda, RunnablePassthrough
|
13 |
+
from langchain_core.output_parsers import StrOutputParser
|
14 |
+
from langchain_together import ChatTogether
|
15 |
+
from langchain_community.vectorstores import Chroma
|
16 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
17 |
+
from sentence_transformers import SentenceTransformer
|
18 |
+
from nltk.tokenize import sent_tokenize
|
19 |
+
|
20 |
+
# Download NLTK resources
|
21 |
+
nltk.download('punkt')
|
22 |
+
|
23 |
+
# Initialize tokenizer
|
24 |
+
tokenizer = tiktoken.get_encoding("cl100k_base")
|
25 |
+
|
26 |
+
# Initialize embedding model
|
27 |
+
embedding_model = SentenceTransformer("BAAI/bge-base-en-v1.5")
|
28 |
+
embedding_function = HuggingFaceEmbeddings(model_name="BAAI/bge-base-en-v1.5")
|
29 |
+
|
30 |
+
# Initialize ChromaDB
|
31 |
+
chroma_client = chromadb.PersistentClient(path="./chroma_store")
|
32 |
+
collection = chroma_client.get_or_create_collection(name="imageonline_chunks")
|
33 |
+
|
34 |
+
# Sectioned URL List
|
35 |
+
url_dict = {
|
36 |
+
"Website Designing": [
|
37 |
+
"https://www.imageonline.co.in/website-designing-mumbai.html",
|
38 |
+
"https://www.imageonline.co.in/domain-hosting-services-india.html",
|
39 |
+
"https://www.imageonline.co.in/best-seo-company-mumbai.html",
|
40 |
+
"https://www.imageonline.co.in/wordpress-blog-designing-india.html",
|
41 |
+
"https://www.imageonline.co.in/social-media-marketing-company-mumbai.html",
|
42 |
+
"https://www.imageonline.co.in/website-template-customization-india.html",
|
43 |
+
"https://www.imageonline.co.in/regular-website-maintanence-services.html",
|
44 |
+
"https://www.imageonline.co.in/mobile-app-designing-mumbai.html",
|
45 |
+
"https://www.imageonline.co.in/web-application-screen-designing.html"
|
46 |
+
],
|
47 |
+
"Website Development": [
|
48 |
+
"https://www.imageonline.co.in/website-development-mumbai.html",
|
49 |
+
"https://www.imageonline.co.in/open-source-customization.html",
|
50 |
+
"https://www.imageonline.co.in/ecommerce-development-company-mumbai.html",
|
51 |
+
"https://www.imageonline.co.in/website-with-content-management-system.html",
|
52 |
+
"https://www.imageonline.co.in/web-application-development-india.html"
|
53 |
+
],
|
54 |
+
"Mobile App Development": [
|
55 |
+
"https://www.imageonline.co.in/mobile-app-development-company-mumbai.html"
|
56 |
+
],
|
57 |
+
"About Us": [
|
58 |
+
"https://www.imageonline.co.in/about-us.html",
|
59 |
+
"https://www.imageonline.co.in/vision.html",
|
60 |
+
"https://www.imageonline.co.in/team.html"
|
61 |
+
],
|
62 |
+
"Testimonials": [
|
63 |
+
"https://www.imageonline.co.in/testimonial.html"
|
64 |
+
]
|
65 |
+
}
|
66 |
+
|
67 |
+
# Helper functions
|
68 |
+
def extract_clean_text(url):
|
69 |
+
try:
|
70 |
+
print(f"π Fetching URL: {url}")
|
71 |
+
downloaded = trafilatura.fetch_url(url)
|
72 |
+
if downloaded:
|
73 |
+
content = trafilatura.extract(downloaded, include_comments=False, include_tables=False)
|
74 |
+
print(f"β
Extracted text from {url}")
|
75 |
+
return content
|
76 |
+
else:
|
77 |
+
print(f"β οΈ Failed to fetch content from {url}")
|
78 |
+
except Exception as e:
|
79 |
+
print(f"β Error fetching {url}: {e}")
|
80 |
+
return None
|
81 |
+
|
82 |
+
def chunk_text(text, max_tokens=400):
|
83 |
+
sentences = sent_tokenize(text)
|
84 |
+
chunks = []
|
85 |
+
current_chunk = []
|
86 |
+
|
87 |
+
for sentence in sentences:
|
88 |
+
current_chunk.append(sentence)
|
89 |
+
tokens = tokenizer.encode(" ".join(current_chunk))
|
90 |
+
if len(tokens) > max_tokens:
|
91 |
+
current_chunk.pop()
|
92 |
+
chunks.append(" ".join(current_chunk).strip())
|
93 |
+
current_chunk = [sentence]
|
94 |
+
|
95 |
+
if current_chunk:
|
96 |
+
chunks.append(" ".join(current_chunk).strip())
|
97 |
+
|
98 |
+
print(f"π Text split into {len(chunks)} chunks.")
|
99 |
+
return chunks
|
100 |
+
|
101 |
+
# Check refresh override
|
102 |
+
force_refresh = os.getenv("FORCE_REFRESH", "false").lower() == "true"
|
103 |
+
|
104 |
+
# Load data into ChromaDB
|
105 |
+
if collection.count() == 0 or force_refresh:
|
106 |
+
print("π Loading documents into ChromaDB...")
|
107 |
+
for section, urls in url_dict.items():
|
108 |
+
for url in urls:
|
109 |
+
text = extract_clean_text(url)
|
110 |
+
if not text:
|
111 |
+
continue
|
112 |
+
chunks = chunk_text(text)
|
113 |
+
embeddings = embedding_model.encode(chunks, convert_to_numpy=True)
|
114 |
+
metadatas = [{"source": url, "section": section} for _ in chunks]
|
115 |
+
ids = [str(uuid.uuid4()) for _ in chunks]
|
116 |
+
|
117 |
+
collection.add(
|
118 |
+
documents=chunks,
|
119 |
+
embeddings=embeddings.tolist(),
|
120 |
+
metadatas=metadatas,
|
121 |
+
ids=ids
|
122 |
+
)
|
123 |
+
print("β
Document loading complete.")
|
124 |
+
else:
|
125 |
+
print("β
Using existing ChromaDB collection.")
|
126 |
+
|
127 |
+
# Vectorstore & Retriever
|
128 |
+
vectorstore = Chroma(
|
129 |
+
client=chroma_client,
|
130 |
+
collection_name="imageonline_chunks",
|
131 |
+
embedding_function=embedding_function
|
132 |
+
)
|
133 |
+
|
134 |
+
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
135 |
+
|
136 |
+
# Together.ai LLM
|
137 |
+
llm = ChatTogether(
|
138 |
+
model="meta-llama/Llama-3-8b-chat-hf",
|
139 |
+
temperature=0.3,
|
140 |
+
max_tokens=1024,
|
141 |
+
top_p=0.7,
|
142 |
+
together_api_key=os.getenv("TOGETHER_API_KEY")
|
143 |
+
)
|
144 |
+
|
145 |
+
# Prompt template (refined)
|
146 |
+
prompt = ChatPromptTemplate.from_template("""
|
147 |
+
You are a helpful assistant for ImageOnline Web Solutions.
|
148 |
+
|
149 |
+
Use ONLY the information provided in the context to answer the user's query.
|
150 |
+
|
151 |
+
Context:
|
152 |
+
{context}
|
153 |
+
|
154 |
+
Question:
|
155 |
+
{question}
|
156 |
+
|
157 |
+
If the answer is not found in the context, say "I'm sorry, I don't have enough information to answer that."
|
158 |
+
""")
|
159 |
+
|
160 |
+
# Context retrieval
|
161 |
+
def retrieve_and_format(query):
|
162 |
+
docs = retriever.get_relevant_documents(query)
|
163 |
+
context_strings = []
|
164 |
+
for doc in docs:
|
165 |
+
content = doc.page_content
|
166 |
+
metadata = doc.metadata
|
167 |
+
source = metadata.get("source", "")
|
168 |
+
section = metadata.get("section", "")
|
169 |
+
context_strings.append(f"[{section}] {content}\n(Source: {source})")
|
170 |
+
return "\n\n".join(context_strings)
|
171 |
+
|
172 |
+
# RAG chain
|
173 |
+
rag_chain = (
|
174 |
+
{"context": RunnableLambda(retrieve_and_format), "question": RunnablePassthrough()}
|
175 |
+
| prompt
|
176 |
+
| llm
|
177 |
+
| StrOutputParser()
|
178 |
+
)
|
179 |
+
|
180 |
+
# Gradio Interface
|
181 |
+
def chat_interface(message, history):
|
182 |
+
history = history or []
|
183 |
+
history.append(("π§ You: " + message, "β³ Generating response..."))
|
184 |
+
try:
|
185 |
+
answer = rag_chain.invoke(message)
|
186 |
+
history[-1] = ("π§ You: " + message, "π€ Bot: " + answer)
|
187 |
+
except Exception as e:
|
188 |
+
error_msg = f"β οΈ Error: {str(e)}"
|
189 |
+
history[-1] = ("π§ You: " + message, f"π€ Bot: {error_msg}")
|
190 |
+
return history, history
|
191 |
+
|
192 |
+
def launch_gradio():
|
193 |
+
with gr.Blocks() as demo:
|
194 |
+
gr.Markdown("# π¬ ImageOnline RAG Chatbot")
|
195 |
+
gr.Markdown("Ask about Website Designing, App Development, SEO, Hosting, etc.")
|
196 |
+
|
197 |
+
chatbot = gr.Chatbot()
|
198 |
+
state = gr.State([])
|
199 |
+
|
200 |
+
with gr.Row():
|
201 |
+
msg = gr.Textbox(placeholder="Ask your question here...", show_label=False, scale=8)
|
202 |
+
send_btn = gr.Button("π¨ Send", scale=1)
|
203 |
+
|
204 |
+
msg.submit(chat_interface, inputs=[msg, state], outputs=[chatbot, state])
|
205 |
+
send_btn.click(chat_interface, inputs=[msg, state], outputs=[chatbot, state])
|
206 |
+
|
207 |
+
with gr.Row():
|
208 |
+
clear_btn = gr.Button("π§Ή Clear Chat")
|
209 |
+
clear_btn.click(fn=lambda: ([], []), outputs=[chatbot, state])
|
210 |
+
|
211 |
+
return demo
|
212 |
+
|
213 |
+
if __name__ == "__main__":
|
214 |
+
demo = launch_gradio()
|
215 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain
|
2 |
+
langchain-together
|
3 |
+
langchain-community
|
4 |
+
chromadb
|
5 |
+
sentence-transformers
|
6 |
+
trafilatura
|
7 |
+
beautifulsoup4
|
8 |
+
nltk
|
9 |
+
tiktoken
|
10 |
+
gradio
|
11 |
+
together
|