Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +121 -0
- requirements.txt +9 -0
app.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import logging
|
4 |
+
import requests
|
5 |
+
import numpy as np
|
6 |
+
import faiss
|
7 |
+
from bs4 import BeautifulSoup
|
8 |
+
from sentence_transformers import SentenceTransformer
|
9 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
10 |
+
from langchain_community.vectorstores import FAISS as LangchainFAISS
|
11 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
12 |
+
from langchain.llms import Together
|
13 |
+
from langchain.chains import RetrievalQA
|
14 |
+
import gradio as gr
|
15 |
+
|
16 |
+
# Set Together.ai API key
|
17 |
+
os.environ["TOGETHER_API_KEY"] = os.getenv("TOGETHER_API_KEY", "a36246d65d8290f43667350b364c5b6bb8562eb50a4b947eec5bd7e79f2dffc6")
|
18 |
+
|
19 |
+
# Logging setup
|
20 |
+
logging.basicConfig(level=logging.INFO)
|
21 |
+
logger = logging.getLogger(__name__)
|
22 |
+
|
23 |
+
# Step 1: Load and chunk webpage
|
24 |
+
def fetch_webpage_text(url):
|
25 |
+
try:
|
26 |
+
response = requests.get(url)
|
27 |
+
response.raise_for_status()
|
28 |
+
soup = BeautifulSoup(response.text, "html.parser")
|
29 |
+
content_div = soup.find("div", {"id": "mw-content-text"}) or soup.body
|
30 |
+
return content_div.get_text(separator="\n", strip=True)
|
31 |
+
except Exception as e:
|
32 |
+
logger.error(f"Error fetching content from {url}: {e}")
|
33 |
+
return ""
|
34 |
+
|
35 |
+
def clean_text(text):
|
36 |
+
text = re.sub(r'\[\s*\d+\s*\]', '', text)
|
37 |
+
text = re.sub(r'\[\s*[a-zA-Z]+\s*\]', '', text)
|
38 |
+
text = re.sub(r'\n{2,}', '\n', text)
|
39 |
+
text = re.sub(r'[ \t]+', ' ', text)
|
40 |
+
return text.strip()
|
41 |
+
|
42 |
+
def chunk_text(text, chunk_size=500, overlap=50):
|
43 |
+
cleaned = clean_text(text)
|
44 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap)
|
45 |
+
return splitter.split_text(cleaned)
|
46 |
+
|
47 |
+
def load_and_chunk_webpage(url):
|
48 |
+
text = fetch_webpage_text(url)
|
49 |
+
return chunk_text(text)
|
50 |
+
|
51 |
+
# Step 2: Embed chunks using SentenceTransformer
|
52 |
+
def embed_chunks(chunks):
|
53 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
54 |
+
embeddings = model.encode(chunks, normalize_embeddings=True)
|
55 |
+
return embeddings, model
|
56 |
+
|
57 |
+
# Step 3: Build FAISS index using LangChain wrapper
|
58 |
+
def build_retriever(chunks):
|
59 |
+
embedding_func = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
60 |
+
db = LangchainFAISS.from_texts(chunks, embedding_func)
|
61 |
+
return db.as_retriever(search_type="similarity", search_kwargs={"k": 3}), db
|
62 |
+
|
63 |
+
# Step 4: Initialize LLM and RAG Chain
|
64 |
+
def initialize_llm():
|
65 |
+
return Together(
|
66 |
+
model="meta-llama/Llama-3-8b-chat-hf",
|
67 |
+
temperature=0.7,
|
68 |
+
max_tokens=512
|
69 |
+
)
|
70 |
+
|
71 |
+
# Initialize all components
|
72 |
+
wiki_url = "https://en.wikipedia.org/wiki/LLaMA"
|
73 |
+
chunks = load_and_chunk_webpage(wiki_url)
|
74 |
+
embeddings, embed_model = embed_chunks(chunks)
|
75 |
+
retriever, db = build_retriever(chunks)
|
76 |
+
llm = initialize_llm()
|
77 |
+
|
78 |
+
qa_chain = RetrievalQA.from_chain_type(
|
79 |
+
llm=llm,
|
80 |
+
retriever=retriever,
|
81 |
+
chain_type="stuff"
|
82 |
+
)
|
83 |
+
|
84 |
+
# Chat logic
|
85 |
+
def chat_with_bot(query):
|
86 |
+
if not query.strip():
|
87 |
+
return "❗ Please enter a question."
|
88 |
+
return qa_chain.run(query)
|
89 |
+
|
90 |
+
# Summary logic
|
91 |
+
def summarize_content():
|
92 |
+
sample_text = " ".join(chunks[:20])
|
93 |
+
prompt = f"Summarize this text in 5 bullet points:\n\n{sample_text[:3000]}"
|
94 |
+
summary = llm.invoke(prompt)
|
95 |
+
return summary.content if hasattr(summary, "content") else summary
|
96 |
+
|
97 |
+
# Gradio UI
|
98 |
+
with gr.Blocks() as demo:
|
99 |
+
gr.Markdown("## 🤖 Chat with LLaMA Webpage Content")
|
100 |
+
|
101 |
+
with gr.Row():
|
102 |
+
chatbot = gr.Chatbot(label="Chat History")
|
103 |
+
|
104 |
+
with gr.Row():
|
105 |
+
question = gr.Textbox(label="Ask your question about LLaMA", placeholder="e.g., Who developed LLaMA?")
|
106 |
+
ask_btn = gr.Button("Submit")
|
107 |
+
clear_btn = gr.Button("Clear Chat")
|
108 |
+
|
109 |
+
summary_output = gr.Textbox(label="📋 Summary of the Webpage", lines=8)
|
110 |
+
summarize_btn = gr.Button("Summarize Content")
|
111 |
+
|
112 |
+
def user_chat_handler(q, history):
|
113 |
+
response = chat_with_bot(q)
|
114 |
+
history.append((q, response))
|
115 |
+
return history, ""
|
116 |
+
|
117 |
+
ask_btn.click(fn=user_chat_handler, inputs=[question, chatbot], outputs=[chatbot, question])
|
118 |
+
clear_btn.click(lambda: [], None, chatbot)
|
119 |
+
summarize_btn.click(fn=summarize_content, inputs=[], outputs=summary_output)
|
120 |
+
|
121 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
beautifulsoup4
|
3 |
+
requests
|
4 |
+
langchain
|
5 |
+
langchain-community
|
6 |
+
huggingface-hub
|
7 |
+
sentence-transformers
|
8 |
+
faiss-cpu
|
9 |
+
together
|