Spaces:
Build error
Build error
สร้าง app.py ให้ text to image
Browse files
app.py
ADDED
|
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import random
|
| 4 |
+
import spaces
|
| 5 |
+
import torch
|
| 6 |
+
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
|
| 7 |
+
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
| 8 |
+
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
| 9 |
+
|
| 10 |
+
dtype = torch.bfloat16
|
| 11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
+
|
| 13 |
+
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
| 14 |
+
good_vae = AutoencoderKL.from_pretrained("ostris/Flex.1-alpha", subfolder="vae", torch_dtype=dtype).to(device)
|
| 15 |
+
pipe = DiffusionPipeline.from_pretrained("ostris/Flex.1-alpha", torch_dtype=dtype, vae=taef1).to(device)
|
| 16 |
+
torch.cuda.empty_cache()
|
| 17 |
+
|
| 18 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 19 |
+
MAX_IMAGE_SIZE = 2048
|
| 20 |
+
|
| 21 |
+
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
| 22 |
+
|
| 23 |
+
@spaces.GPU(duration=75)
|
| 24 |
+
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
| 25 |
+
if randomize_seed:
|
| 26 |
+
seed = random.randint(0, MAX_SEED)
|
| 27 |
+
generator = torch.Generator().manual_seed(seed)
|
| 28 |
+
|
| 29 |
+
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
| 30 |
+
prompt=prompt,
|
| 31 |
+
guidance_scale=guidance_scale,
|
| 32 |
+
num_inference_steps=num_inference_steps,
|
| 33 |
+
width=width,
|
| 34 |
+
height=height,
|
| 35 |
+
generator=generator,
|
| 36 |
+
output_type="pil",
|
| 37 |
+
good_vae=good_vae,
|
| 38 |
+
):
|
| 39 |
+
yield img, seed
|
| 40 |
+
|
| 41 |
+
examples = [
|
| 42 |
+
"an astronaut riding a horse on the moon",
|
| 43 |
+
"A man is a DJ at a nightclub. There is a bright sign behind him that says 'Flex.1'",
|
| 44 |
+
"photo of a cat that is half black and half orange tabby, split down the middle. The cat has on a blue tophat. They are holding a martini glass with a pink ball of yarn in it with green knitting needles sticking out, in one paw. In the other paw, they are holding a DVD case for a movie titled, \"This is a test\" that has a golden robot on it. In the background is a busy night club with a giant mushroom man dancing with a bear.",
|
| 45 |
+
]
|
| 46 |
+
|
| 47 |
+
css="""
|
| 48 |
+
#col-container {
|
| 49 |
+
margin: 0 auto;
|
| 50 |
+
max-width: 520px;
|
| 51 |
+
}
|
| 52 |
+
"""
|
| 53 |
+
|
| 54 |
+
with gr.Blocks(css=css) as demo:
|
| 55 |
+
|
| 56 |
+
with gr.Column(elem_id="col-container"):
|
| 57 |
+
gr.Markdown(f"""# Flex.1-alpha
|
| 58 |
+
8B param rectified flow transformer capable of generating images from text descriptions
|
| 59 |
+
[[Apache 2.0 license](https://huggingface.co/ostris/Flex.1-alpha/blob/main/LICENSE.txt)] [[blog](https://ostris.com/flex1-alpha/)] [[model](https://huggingface.co/ostris/Flex.1-alpha)]
|
| 60 |
+
""")
|
| 61 |
+
|
| 62 |
+
with gr.Row():
|
| 63 |
+
|
| 64 |
+
prompt = gr.Text(
|
| 65 |
+
label="Prompt",
|
| 66 |
+
show_label=False,
|
| 67 |
+
max_lines=1,
|
| 68 |
+
placeholder="Enter your prompt",
|
| 69 |
+
container=False,
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
run_button = gr.Button("Run", scale=0)
|
| 73 |
+
|
| 74 |
+
result = gr.Image(label="Result", show_label=False)
|
| 75 |
+
|
| 76 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 77 |
+
|
| 78 |
+
seed = gr.Slider(
|
| 79 |
+
label="Seed",
|
| 80 |
+
minimum=0,
|
| 81 |
+
maximum=MAX_SEED,
|
| 82 |
+
step=1,
|
| 83 |
+
value=0,
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 87 |
+
|
| 88 |
+
with gr.Row():
|
| 89 |
+
|
| 90 |
+
width = gr.Slider(
|
| 91 |
+
label="Width",
|
| 92 |
+
minimum=256,
|
| 93 |
+
maximum=MAX_IMAGE_SIZE,
|
| 94 |
+
step=32,
|
| 95 |
+
value=1024,
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
height = gr.Slider(
|
| 99 |
+
label="Height",
|
| 100 |
+
minimum=256,
|
| 101 |
+
maximum=MAX_IMAGE_SIZE,
|
| 102 |
+
step=32,
|
| 103 |
+
value=1024,
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
with gr.Row():
|
| 107 |
+
|
| 108 |
+
guidance_scale = gr.Slider(
|
| 109 |
+
label="Guidance Scale",
|
| 110 |
+
minimum=1,
|
| 111 |
+
maximum=15,
|
| 112 |
+
step=0.1,
|
| 113 |
+
value=3.5,
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
num_inference_steps = gr.Slider(
|
| 117 |
+
label="Number of inference steps",
|
| 118 |
+
minimum=1,
|
| 119 |
+
maximum=50,
|
| 120 |
+
step=1,
|
| 121 |
+
value=28,
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
gr.Examples(
|
| 125 |
+
examples = examples,
|
| 126 |
+
fn = infer,
|
| 127 |
+
inputs = [prompt],
|
| 128 |
+
outputs = [result, seed],
|
| 129 |
+
cache_examples="lazy"
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
gr.on(
|
| 133 |
+
triggers=[run_button.click, prompt.submit],
|
| 134 |
+
fn = infer,
|
| 135 |
+
inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
| 136 |
+
outputs = [result, seed]
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
demo.launch()
|