Spaces:
Sleeping
Sleeping
File size: 8,798 Bytes
f9903ea 9739fd6 f9903ea 95fe581 7c483c8 95fe581 c70917b 9739fd6 f9903ea 95fe581 7c483c8 48034cd 7c483c8 95fe581 7c483c8 48034cd 7c483c8 48034cd 7d63c56 7c483c8 95fe581 7c483c8 95fe581 7d63c56 95fe581 7d63c56 f9903ea 95fe581 bfc5779 7c483c8 48034cd 95fe581 48034cd 7c483c8 95fe581 345319f 7c483c8 95fe581 7c483c8 345319f f9903ea 7c483c8 7f5130a 7d63c56 7c483c8 7f5130a bfc5779 7c483c8 345319f bfc5779 95fe581 6f7d2fb 48034cd 6f7d2fb 48034cd 6f7d2fb 48034cd 6f7d2fb 48034cd 6f7d2fb 48034cd 6f7d2fb 48034cd 6f7d2fb 48034cd 95fe581 48034cd 95fe581 48034cd 305441b 48034cd 305441b 48034cd 305441b 48034cd 305441b 48034cd 305441b 48034cd 305441b 6f7d2fb 305441b 95fe581 bfc5779 345319f bfc5779 6f7d2fb 48034cd b4fad3e bfc5779 345319f bfc5779 345319f 48034cd bfc5779 345319f bfc5779 345319f 48034cd bfc5779 95fe581 305441b 48034cd fbd79d5 95fe581 fbd79d5 95fe581 fbd79d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import streamlit as st
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
import torch
import numpy as np
# Function to analyze email for spam and sentiment
def analyze_email(email_body):
# Load pre-trained models for spam detection and sentiment analysis
spam_pipeline = pipeline("text-classification", model="cybersectony/phishing-email-detection-distilbert_v2.4.1")
sentiment_model = AutoModelForSequenceClassification.from_pretrained("ISOM5240GP4/email_sentiment", num_labels=2)
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
# Step 1: Check if email is spam
spam_result = spam_pipeline(email_body)
spam_label = spam_result[0]["label"]
spam_confidence = spam_result[0]["score"]
if spam_label == "LABEL_1":
return "spam", f"This is a spam email (Confidence: {spam_confidence:.2f}). No follow-up needed."
else:
# Step 2: Analyze sentiment for non-spam emails
inputs = tokenizer(email_body, padding=True, truncation=True, return_tensors='pt')
outputs = sentiment_model(**inputs)
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
predictions = predictions.cpu().detach().numpy()
sentiment_index = np.argmax(predictions)
sentiment_confidence = predictions[0][sentiment_index]
sentiment = "Positive" if sentiment_index == 1 else "Negative"
if sentiment == "Positive":
return "positive", (f"This email is not spam (Confidence: {spam_confidence:.2f}).\n"
f"Sentiment: {sentiment} (Confidence: {sentiment_confidence:.2f}). No follow-up needed.")
else:
return "negative", (f"This email is not spam (Confidence: {spam_confidence:.2f}).\n"
f"Sentiment: {sentiment} (Confidence: {sentiment_confidence:.2f}).\n"
"**Need to Follow-Up**: This email is not spam and has negative sentiment.")
# Main application function
def main():
# Set page title
st.title("EmailSentry")
# Set project objective
st.write("Aims to perform analysis on incoming emails and to determine whether there is urgency or higher priority for the company to follow-up.")
# Initialize session state variables
if "email_body" not in st.session_state:
st.session_state.email_body = ""
if "result" not in st.session_state:
st.session_state.result = ""
if "result_type" not in st.session_state:
st.session_state.result_type = ""
# Collapsible instructions section
with st.expander("How to Use", expanded=False):
st.write("""
- Type or paste an email into the text box.
- Alternatively, click one of the sample buttons to load a predefined email.
- Press 'Analyze Email' to check if it’s spam and analyze its sentiment.
- Use 'Clear' to reset the input and result.
""")
# Input text area for email content
email_body = st.text_area("Email Body", value=st.session_state.email_body, height=200, key="email_input")
# Define sample emails and their snippets for buttons
sample_spam = """
Subject: Urgent: Verify Your Account Now!
Dear Customer,
We have detected unusual activity on your account. To prevent suspension, please verify your login details immediately by clicking the link below:
[Click Here to Verify](http://totally-legit-site.com/verify)
Failure to verify within 24 hours will result in your account being locked. This is for your security.
Best regards,
The Security Team
"""
spam_snippet = "Subject: Urgent: Verify Your Account Now! Dear Customer, We have detected unusual activity..."
sample_not_spam_positive = """
Subject: Great Experience with HKTV mall
Dear Sir,
I just received my order and I’m really impressed with the speed of the delivery. Keep up the good work.
Best regards,
Emily
"""
positive_snippet = "Subject: Great Experience with HKTV mall Dear Sir, I just received my order and I’m really..."
sample_not_spam_negative = """
Subject: Issue with Recent Delivery
Dear Support,
I received my package today, but it was damaged, and two items were missing. This is really frustrating—please let me know how we can resolve this as soon as possible.
Thanks,
Sarah
"""
negative_snippet = "Subject: Issue with Recent Delivery Dear Support, I received my package today, but..."
# Custom CSS for styling buttons and result boxes
st.markdown("""
<style>
/* Sample buttons (smaller text) */
div.stButton > button[kind="secondary"] {
font-size: 12px;
padding: 5px 10px;
background-color: #f0f0f0;
color: #333333;
border: 1px solid #cccccc;
border-radius: 3px;
}
/* Analyze Email button (larger, orange) */
div.stButton > button[kind="primary"] {
background-color: #FF5733;
color: white;
font-size: 18px;
padding: 12px 24px;
border: none;
border-radius: 5px;
margin-right: 10px;
}
div.stButton > button[kind="primary"]:hover {
background-color: #E74C3C;
}
/* Clear button (aligned with Analyze, gray) */
div.stButton > button[kind="secondary"][key="clear"] {
background-color: #d3d3d3;
color: #333333;
font-size: 18px;
padding: 12px 24px;
border: none;
border-radius: 5px;
}
div.stButton > button[kind="secondary"][key="clear"]:hover {
background-color: #b0b0b0;
}
/* Result boxes */
.spam-result {
background-color: #ffdddd; /* Softer red */
padding: 10px;
border-radius: 5px;
border: 1px solid #ffaaaa;
}
.positive-result {
background-color: #d4edda; /* Softer green */
padding: 10px;
border-radius: 5px;
border: 1px solid #a3d7a9;
}
.negative-result {
background-color: #fff4e6; /* Softer orange */
padding: 10px;
border-radius: 5px;
border: 1px solid #ffd6a5;
}
</style>
""", unsafe_allow_html=True)
# Subheading for sample buttons
st.subheader("Examples")
# Sample buttons layout (3 columns)
col1, col2, col3 = st.columns(3)
with col1:
if st.button(spam_snippet, key="spam_sample"):
st.session_state.email_body = sample_spam
st.session_state.result = ""
st.session_state.result_type = ""
st.rerun()
with col2:
if st.button(positive_snippet, key="positive_sample"):
st.session_state.email_body = sample_not_spam_positive
st.session_state.result = ""
st.session_state.result_type = ""
st.rerun()
with col3:
if st.button(negative_snippet, key="negative_sample"):
st.session_state.email_body = sample_not_spam_negative
st.session_state.result = ""
st.session_state.result_type = ""
st.rerun()
# Action buttons layout (Analyze and Clear)
col_analyze, col_clear = st.columns(2)
with col_analyze:
if st.button("Analyze Email", key="analyze", type="primary"):
if email_body:
with st.spinner("Analyzing email..."):
result_type, result = analyze_email(email_body)
st.session_state.result = result
st.session_state.result_type = result_type
else:
st.session_state.result = "Please enter an email body or select a sample to analyze."
st.session_state.result_type = ""
with col_clear:
if st.button("Clear", key="clear"):
st.session_state.email_body = ""
st.session_state.result = ""
st.session_state.result_type = ""
st.rerun()
# Display analysis result in styled boxes
if st.session_state.result:
if st.session_state.result_type == "spam":
st.markdown(f'<div class="spam-result">{st.session_state.result}</div>', unsafe_allow_html=True)
elif st.session_state.result_type == "positive":
st.markdown(f'<div class="positive-result">{st.session_state.result}</div>', unsafe_allow_html=True)
elif st.session_state.result_type == "negative":
st.markdown(f'<div class="negative-result">{st.session_state.result}</div>', unsafe_allow_html=True)
else:
st.write(st.session_state.result) # For error messages
# Run the app
if __name__ == "__main__":
main() |