Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,53 +5,55 @@ import numpy as np
|
|
5 |
|
6 |
# Function to analyze email for spam and sentiment
|
7 |
def analyze_email(email_body):
|
8 |
-
# Load pre-trained models
|
9 |
spam_pipeline = pipeline("text-classification", model="cybersectony/phishing-email-detection-distilbert_v2.4.1")
|
10 |
sentiment_model = AutoModelForSequenceClassification.from_pretrained("ISOM5240GP4/email_sentiment", num_labels=2)
|
11 |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
12 |
|
13 |
-
# Step 1: Check if email is spam
|
14 |
spam_result = spam_pipeline(email_body)
|
15 |
-
spam_label = spam_result[0]["label"]
|
16 |
spam_confidence = spam_result[0]["score"]
|
17 |
|
18 |
if spam_label == "LABEL_1":
|
|
|
19 |
return "spam", f"This is a spam email (Confidence: {spam_confidence:.2f}). No follow-up needed."
|
20 |
else:
|
21 |
-
# Step 2:
|
22 |
-
inputs = tokenizer(email_body, padding=True, truncation=True, return_tensors='pt')
|
23 |
-
outputs = sentiment_model(**inputs)
|
24 |
-
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
25 |
-
predictions = predictions.cpu().detach().numpy()
|
26 |
-
sentiment_index = np.argmax(predictions)
|
27 |
sentiment_confidence = predictions[0][sentiment_index]
|
28 |
sentiment = "Positive" if sentiment_index == 1 else "Negative"
|
29 |
|
30 |
if sentiment == "Positive":
|
|
|
31 |
return "positive", (f"This email is not spam (Confidence: {spam_confidence:.2f}).\n"
|
32 |
f"Sentiment: {sentiment} (Confidence: {sentiment_confidence:.2f}). No follow-up needed.")
|
33 |
else:
|
34 |
-
#
|
35 |
return "negative", (f"This email is not spam (Confidence: {spam_confidence:.2f}).\n"
|
36 |
f"Sentiment: {sentiment} (Confidence: {sentiment_confidence:.2f}).\n"
|
37 |
"<b>Need to Follow-Up</b>: This email is not spam and has negative sentiment.")
|
38 |
|
39 |
# Main application function
|
40 |
def main():
|
41 |
-
# Set
|
42 |
st.title("EmailSentry")
|
43 |
-
#
|
44 |
st.write("Aims to perform analysis on incoming emails and to determine whether there is urgency or higher priority for the company to follow-up.")
|
45 |
|
46 |
-
# Initialize session state
|
47 |
if "email_body" not in st.session_state:
|
48 |
-
st.session_state.email_body = ""
|
49 |
if "result" not in st.session_state:
|
50 |
-
st.session_state.result = ""
|
51 |
if "result_type" not in st.session_state:
|
52 |
-
st.session_state.result_type = ""
|
53 |
|
54 |
-
#
|
55 |
with st.expander("How to Use", expanded=False):
|
56 |
st.write("""
|
57 |
- Type or paste an email into the text box.
|
@@ -60,10 +62,10 @@ def main():
|
|
60 |
- Use 'Clear' to reset the input and result.
|
61 |
""")
|
62 |
|
63 |
-
#
|
64 |
email_body = st.text_area("Email Body", value=st.session_state.email_body, height=200, key="email_input")
|
65 |
|
66 |
-
# Define sample emails and their snippets for buttons
|
67 |
sample_spam = """
|
68 |
Subject: Urgent: Verify Your Account Now!
|
69 |
Dear Customer,
|
@@ -96,7 +98,7 @@ Sarah
|
|
96 |
# Custom CSS for styling buttons and result boxes
|
97 |
st.markdown("""
|
98 |
<style>
|
99 |
-
/*
|
100 |
div.stButton > button[kind="secondary"] {
|
101 |
font-size: 12px;
|
102 |
padding: 5px 10px;
|
@@ -105,21 +107,21 @@ Sarah
|
|
105 |
border: 1px solid #cccccc;
|
106 |
border-radius: 3px;
|
107 |
}
|
108 |
-
/* Analyze Email button (orange) */
|
109 |
div.stButton > button[key="analyze"] {
|
110 |
-
background-color: #FF5733;
|
111 |
color: white;
|
112 |
font-size: 18px;
|
113 |
padding: 12px 24px;
|
114 |
border: none;
|
115 |
border-radius: 5px;
|
116 |
width: 100%;
|
117 |
-
height: 50px;
|
118 |
box-sizing: border-box;
|
119 |
text-align: center;
|
120 |
}
|
121 |
div.stButton > button[key="analyze"]:hover {
|
122 |
-
background-color: #E74C3C;
|
123 |
}
|
124 |
/* Clear button (gray, aligned with Analyze) */
|
125 |
div.stButton > button[key="clear"] {
|
@@ -130,80 +132,88 @@ Sarah
|
|
130 |
border: none;
|
131 |
border-radius: 5px;
|
132 |
width: 100%;
|
133 |
-
height: 50px;
|
134 |
box-sizing: border-box;
|
135 |
text-align: center;
|
136 |
}
|
137 |
div.stButton > button[key="clear"]:hover {
|
138 |
-
background-color: #b0b0b0;
|
139 |
}
|
140 |
-
/* Result boxes */
|
141 |
.spam-result {
|
142 |
-
background-color: #
|
|
|
143 |
padding: 10px;
|
144 |
border-radius: 5px;
|
145 |
-
border: 1px solid #
|
146 |
}
|
147 |
.positive-result {
|
148 |
-
background-color: #
|
|
|
149 |
padding: 10px;
|
150 |
border-radius: 5px;
|
151 |
-
border: 1px solid #
|
152 |
}
|
153 |
.negative-result {
|
154 |
-
background-color: #
|
|
|
155 |
padding: 10px;
|
156 |
border-radius: 5px;
|
157 |
-
border: 1px solid #
|
158 |
}
|
159 |
</style>
|
160 |
""", unsafe_allow_html=True)
|
161 |
|
162 |
-
# Subheading
|
163 |
st.subheader("Examples")
|
164 |
|
165 |
-
#
|
166 |
col1, col2, col3 = st.columns(3)
|
167 |
with col1:
|
|
|
168 |
if st.button(spam_snippet, key="spam_sample"):
|
169 |
st.session_state.email_body = sample_spam
|
170 |
st.session_state.result = ""
|
171 |
st.session_state.result_type = ""
|
172 |
st.rerun()
|
173 |
with col2:
|
|
|
174 |
if st.button(positive_snippet, key="positive_sample"):
|
175 |
st.session_state.email_body = sample_not_spam_positive
|
176 |
st.session_state.result = ""
|
177 |
st.session_state.result_type = ""
|
178 |
st.rerun()
|
179 |
with col3:
|
|
|
180 |
if st.button(negative_snippet, key="negative_sample"):
|
181 |
st.session_state.email_body = sample_not_spam_negative
|
182 |
st.session_state.result = ""
|
183 |
st.session_state.result_type = ""
|
184 |
st.rerun()
|
185 |
|
186 |
-
#
|
187 |
col_analyze, col_clear = st.columns(2)
|
188 |
with col_analyze:
|
189 |
-
#
|
190 |
if st.button("Analyze Email", key="analyze"):
|
191 |
if email_body:
|
192 |
-
with st.spinner("Analyzing email..."):
|
193 |
result_type, result = analyze_email(email_body)
|
194 |
st.session_state.result = result
|
195 |
st.session_state.result_type = result_type
|
196 |
else:
|
|
|
197 |
st.session_state.result = "Please enter an email body or select a sample to analyze."
|
198 |
st.session_state.result_type = ""
|
199 |
with col_clear:
|
|
|
200 |
if st.button("Clear", key="clear"):
|
201 |
st.session_state.email_body = ""
|
202 |
st.session_state.result = ""
|
203 |
st.session_state.result_type = ""
|
204 |
st.rerun()
|
205 |
|
206 |
-
# Display analysis result in styled boxes
|
207 |
if st.session_state.result:
|
208 |
if st.session_state.result_type == "spam":
|
209 |
st.markdown(f'<div class="spam-result">{st.session_state.result}</div>', unsafe_allow_html=True)
|
@@ -212,7 +222,7 @@ Sarah
|
|
212 |
elif st.session_state.result_type == "negative":
|
213 |
st.markdown(f'<div class="negative-result">{st.session_state.result}</div>', unsafe_allow_html=True)
|
214 |
else:
|
215 |
-
st.write(st.session_state.result) #
|
216 |
|
217 |
# Run the app
|
218 |
if __name__ == "__main__":
|
|
|
5 |
|
6 |
# Function to analyze email for spam and sentiment
|
7 |
def analyze_email(email_body):
|
8 |
+
# Load pre-trained models: spam detection and sentiment analysis
|
9 |
spam_pipeline = pipeline("text-classification", model="cybersectony/phishing-email-detection-distilbert_v2.4.1")
|
10 |
sentiment_model = AutoModelForSequenceClassification.from_pretrained("ISOM5240GP4/email_sentiment", num_labels=2)
|
11 |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
12 |
|
13 |
+
# Step 1: Check if the email is spam using the spam detection model
|
14 |
spam_result = spam_pipeline(email_body)
|
15 |
+
spam_label = spam_result[0]["label"] # LABEL_1 indicates spam
|
16 |
spam_confidence = spam_result[0]["score"]
|
17 |
|
18 |
if spam_label == "LABEL_1":
|
19 |
+
# If spam, return type "spam" and a message indicating no follow-up
|
20 |
return "spam", f"This is a spam email (Confidence: {spam_confidence:.2f}). No follow-up needed."
|
21 |
else:
|
22 |
+
# Step 2: For non-spam emails, analyze sentiment (positive/negative)
|
23 |
+
inputs = tokenizer(email_body, padding=True, truncation=True, return_tensors='pt') # Tokenize input
|
24 |
+
outputs = sentiment_model(**inputs) # Get model predictions
|
25 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1) # Apply softmax for probabilities
|
26 |
+
predictions = predictions.cpu().detach().numpy() # Convert to numpy array
|
27 |
+
sentiment_index = np.argmax(predictions) # Get the predicted sentiment (0 = negative, 1 = positive)
|
28 |
sentiment_confidence = predictions[0][sentiment_index]
|
29 |
sentiment = "Positive" if sentiment_index == 1 else "Negative"
|
30 |
|
31 |
if sentiment == "Positive":
|
32 |
+
# If positive sentiment, no follow-up needed
|
33 |
return "positive", (f"This email is not spam (Confidence: {spam_confidence:.2f}).\n"
|
34 |
f"Sentiment: {sentiment} (Confidence: {sentiment_confidence:.2f}). No follow-up needed.")
|
35 |
else:
|
36 |
+
# If negative sentiment, mark as needing follow-up with bolded text
|
37 |
return "negative", (f"This email is not spam (Confidence: {spam_confidence:.2f}).\n"
|
38 |
f"Sentiment: {sentiment} (Confidence: {sentiment_confidence:.2f}).\n"
|
39 |
"<b>Need to Follow-Up</b>: This email is not spam and has negative sentiment.")
|
40 |
|
41 |
# Main application function
|
42 |
def main():
|
43 |
+
# Set the app title to the project name
|
44 |
st.title("EmailSentry")
|
45 |
+
# Display the project objective
|
46 |
st.write("Aims to perform analysis on incoming emails and to determine whether there is urgency or higher priority for the company to follow-up.")
|
47 |
|
48 |
+
# Initialize session state to store email input and analysis results
|
49 |
if "email_body" not in st.session_state:
|
50 |
+
st.session_state.email_body = "" # Holds the email text
|
51 |
if "result" not in st.session_state:
|
52 |
+
st.session_state.result = "" # Stores the analysis result text
|
53 |
if "result_type" not in st.session_state:
|
54 |
+
st.session_state.result_type = "" # Tracks result type (spam, positive, negative)
|
55 |
|
56 |
+
# Add collapsible instructions for user guidance
|
57 |
with st.expander("How to Use", expanded=False):
|
58 |
st.write("""
|
59 |
- Type or paste an email into the text box.
|
|
|
62 |
- Use 'Clear' to reset the input and result.
|
63 |
""")
|
64 |
|
65 |
+
# Text area where users input or view the email body
|
66 |
email_body = st.text_area("Email Body", value=st.session_state.email_body, height=200, key="email_input")
|
67 |
|
68 |
+
# Define sample emails and their snippets for example buttons
|
69 |
sample_spam = """
|
70 |
Subject: Urgent: Verify Your Account Now!
|
71 |
Dear Customer,
|
|
|
98 |
# Custom CSS for styling buttons and result boxes
|
99 |
st.markdown("""
|
100 |
<style>
|
101 |
+
/* Style for sample buttons (smaller, light gray) */
|
102 |
div.stButton > button[kind="secondary"] {
|
103 |
font-size: 12px;
|
104 |
padding: 5px 10px;
|
|
|
107 |
border: 1px solid #cccccc;
|
108 |
border-radius: 3px;
|
109 |
}
|
110 |
+
/* Analyze Email button (orange, matches Clear button size) */
|
111 |
div.stButton > button[key="analyze"] {
|
112 |
+
background-color: #FF5733; /* Original orange color */
|
113 |
color: white;
|
114 |
font-size: 18px;
|
115 |
padding: 12px 24px;
|
116 |
border: none;
|
117 |
border-radius: 5px;
|
118 |
width: 100%;
|
119 |
+
height: 50px;
|
120 |
box-sizing: border-box;
|
121 |
text-align: center;
|
122 |
}
|
123 |
div.stButton > button[key="analyze"]:hover {
|
124 |
+
background-color: #E74C3C; /* Darker orange on hover */
|
125 |
}
|
126 |
/* Clear button (gray, aligned with Analyze) */
|
127 |
div.stButton > button[key="clear"] {
|
|
|
132 |
border: none;
|
133 |
border-radius: 5px;
|
134 |
width: 100%;
|
135 |
+
height: 50px;
|
136 |
box-sizing: border-box;
|
137 |
text-align: center;
|
138 |
}
|
139 |
div.stButton > button[key="clear"]:hover {
|
140 |
+
background-color: #b0b0b0; /* Darker gray on hover */
|
141 |
}
|
142 |
+
/* Result boxes with updated colors */
|
143 |
.spam-result {
|
144 |
+
background-color: #ff3333; /* Red for no follow-up (spam) */
|
145 |
+
color: white;
|
146 |
padding: 10px;
|
147 |
border-radius: 5px;
|
148 |
+
border: 1px solid #cc0000;
|
149 |
}
|
150 |
.positive-result {
|
151 |
+
background-color: #ff3333; /* Red for no follow-up (positive) */
|
152 |
+
color: white;
|
153 |
padding: 10px;
|
154 |
border-radius: 5px;
|
155 |
+
border: 1px solid #cc0000;
|
156 |
}
|
157 |
.negative-result {
|
158 |
+
background-color: #006633; /* Dark green for follow-up needed */
|
159 |
+
color: white;
|
160 |
padding: 10px;
|
161 |
border-radius: 5px;
|
162 |
+
border: 1px solid #004d26;
|
163 |
}
|
164 |
</style>
|
165 |
""", unsafe_allow_html=True)
|
166 |
|
167 |
+
# Subheading to label the sample email buttons
|
168 |
st.subheader("Examples")
|
169 |
|
170 |
+
# Layout for sample buttons in 3 columns
|
171 |
col1, col2, col3 = st.columns(3)
|
172 |
with col1:
|
173 |
+
# Button to load spam sample
|
174 |
if st.button(spam_snippet, key="spam_sample"):
|
175 |
st.session_state.email_body = sample_spam
|
176 |
st.session_state.result = ""
|
177 |
st.session_state.result_type = ""
|
178 |
st.rerun()
|
179 |
with col2:
|
180 |
+
# Button to load positive non-spam sample
|
181 |
if st.button(positive_snippet, key="positive_sample"):
|
182 |
st.session_state.email_body = sample_not_spam_positive
|
183 |
st.session_state.result = ""
|
184 |
st.session_state.result_type = ""
|
185 |
st.rerun()
|
186 |
with col3:
|
187 |
+
# Button to load negative non-spam sample
|
188 |
if st.button(negative_snippet, key="negative_sample"):
|
189 |
st.session_state.email_body = sample_not_spam_negative
|
190 |
st.session_state.result = ""
|
191 |
st.session_state.result_type = ""
|
192 |
st.rerun()
|
193 |
|
194 |
+
# Layout for action buttons (Analyze and Clear) in 2 columns
|
195 |
col_analyze, col_clear = st.columns(2)
|
196 |
with col_analyze:
|
197 |
+
# Button to trigger email analysis
|
198 |
if st.button("Analyze Email", key="analyze"):
|
199 |
if email_body:
|
200 |
+
with st.spinner("Analyzing email..."): # Show spinner during processing
|
201 |
result_type, result = analyze_email(email_body)
|
202 |
st.session_state.result = result
|
203 |
st.session_state.result_type = result_type
|
204 |
else:
|
205 |
+
# Error message if no email is provided
|
206 |
st.session_state.result = "Please enter an email body or select a sample to analyze."
|
207 |
st.session_state.result_type = ""
|
208 |
with col_clear:
|
209 |
+
# Button to reset the app state
|
210 |
if st.button("Clear", key="clear"):
|
211 |
st.session_state.email_body = ""
|
212 |
st.session_state.result = ""
|
213 |
st.session_state.result_type = ""
|
214 |
st.rerun()
|
215 |
|
216 |
+
# Display the analysis result in styled boxes based on result type
|
217 |
if st.session_state.result:
|
218 |
if st.session_state.result_type == "spam":
|
219 |
st.markdown(f'<div class="spam-result">{st.session_state.result}</div>', unsafe_allow_html=True)
|
|
|
222 |
elif st.session_state.result_type == "negative":
|
223 |
st.markdown(f'<div class="negative-result">{st.session_state.result}</div>', unsafe_allow_html=True)
|
224 |
else:
|
225 |
+
st.write(st.session_state.result) # Display error messages without styling
|
226 |
|
227 |
# Run the app
|
228 |
if __name__ == "__main__":
|