Spaces:
Sleeping
Sleeping
"""LangGraph: agent graph w/ tools""" | |
import os | |
from dotenv import load_dotenv | |
from langgraph.graph import START, StateGraph, MessagesState | |
from langgraph.prebuilt import tools_condition | |
from langgraph.prebuilt import ToolNode | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings | |
from langchain_community.tools.tavily_search import TavilySearchResults | |
from langchain_community.document_loaders import WikipediaLoader | |
from langchain_community.document_loaders import ArxivLoader | |
from langchain_core.messages import SystemMessage, HumanMessage | |
from langchain_core.tools import tool | |
from langchain.tools.retriever import create_retriever_tool | |
from duckduckgo_search import DDGS | |
load_dotenv() | |
def multiply(a: int, b: int) -> int: | |
"""Multiply two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
return a * b | |
def add(a: int, b: int) -> int: | |
"""Add two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
return a + b | |
def subtract(a: int, b: int) -> int: | |
"""Subtract two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
return a - b | |
def divide(a: int, b: int) -> int: | |
"""Divide two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
if b == 0: | |
raise ValueError("Cannot divide by zero.") | |
return a / b | |
def modulus(a: int, b: int) -> int: | |
"""Get the modulus of two numbers. | |
Args: | |
a: first int | |
b: second int | |
""" | |
return a % b | |
def power(a: float, b: float) -> float: | |
""" | |
Get the power of two numbers. | |
Args: | |
a (float): the first number | |
b (float): the second number | |
""" | |
return a**b | |
def square_root(a: float) -> float | complex: | |
""" | |
Get the square root of a number. | |
Args: | |
a (float): the number to get the square root of | |
""" | |
if a >= 0: | |
return a**0.5 | |
return cmath.sqrt(a) | |
def wiki_search(query: str) -> str: | |
"""Search Wikipedia for a query and return maximum 2 results. | |
Args: | |
query: The search query.""" | |
search_docs = WikipediaLoader(query=query, load_max_docs=2).load() | |
formatted_search_docs = "\n\n---\n\n".join( | |
[ | |
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' | |
for doc in search_docs | |
]) | |
return {"wiki_results": formatted_search_docs} | |
def web_search(query: str) -> str: | |
"""Search Tavily/DuckDuckGo for a query and return maximum 3 results. | |
Args: | |
query: The search query.""" | |
""" | |
search_docs = TavilySearchResults(max_results=3).invoke(query=query) | |
formatted_search_docs = "\n\n---\n\n".join( | |
[ | |
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' | |
for doc in search_docs | |
]) | |
""" | |
search_docs = DDGS().text(query, max_results=3) | |
formatted_search_docs = "\n\n---\n\n".join( | |
[ | |
f'<Document source="{doc["href"]}"/>\n{doc["body"]}\n</Document>' | |
for doc in search_docs | |
]) | |
return {"web_results": formatted_search_docs} | |
# load the system prompt from the file | |
with open("system_prompt.txt", "r", encoding="utf-8") as f: | |
system_prompt = f.read() | |
# System message | |
sys_msg = SystemMessage(content=system_prompt) | |
""" | |
tools = [ | |
multiply, | |
add, | |
subtract, | |
divide, | |
modulus, | |
power, | |
square_root, | |
wiki_search, | |
web_search, | |
] | |
""" | |
tools = [web_search] | |
# Build graph function | |
def build_graph(provider: str = "google"): | |
"""Build the graph""" | |
# Load environment variables from .env file | |
if provider == "huggingface": | |
# Huggingface endpoint | |
""" | |
llm = ChatHuggingFace( | |
llm=HuggingFaceEndpoint( | |
#endpoint_url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", | |
#endpoint_url="https://api-inference.huggingface.co/models/Qwen/Qwen3-30B-A3B", | |
endpoint_url="https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Coder-32B.Instruct", | |
#endpoint_url="https://api-inference.huggingface.co/models/Qwen/Qwen3-4B", | |
temperature=0, | |
), | |
) | |
""" | |
llm = ChatHuggingFace( | |
llm=HuggingFaceEndpoint( | |
repo_id="TinyLlama/TinyLlama-1.1B-Chat-v1.0", | |
#endpoint_url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", | |
#endpoint_url="https://api-inference.huggingface.co/models/microsoft/phi-4", | |
#endpoint_url="https://api-inference.huggingface.co/models/TinyLlama/TinyLlama-1.1B-Chat-v1.0", | |
task="text-generation", # for chat‐style use “text-generation” | |
#max_new_tokens=1024, | |
#do_sample=False, | |
#repetition_penalty=1.03, | |
temperature=0, | |
), | |
#verbose=True, | |
) | |
elif provider == "google": | |
# Google Gemini | |
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0) | |
#llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash", temperature=0) | |
else: | |
raise ValueError("Invalid provider. Choose 'huggingface'.") | |
# Bind tools to LLM | |
llm_with_tools = llm.bind_tools(tools) | |
# Node | |
def assistant(state: MessagesState): | |
"""Assistant node""" | |
return {"messages": [llm_with_tools.invoke([sys_msg] + state["messages"])]} | |
#def retriever(state: MessagesState): | |
# """Retriever node""" | |
# return {"messages": [sys_msg] + state["messages"]} | |
builder = StateGraph(MessagesState) | |
#builder.add_node("retriever", retriever) | |
builder.add_node("assistant", assistant) | |
builder.add_node("tools", ToolNode(tools)) | |
#builder.add_edge(START, "retriever") | |
builder.add_edge(START, "assistant") | |
#builder.add_edge("retriever", "assistant") | |
builder.add_conditional_edges( | |
"assistant", | |
tools_condition, | |
) | |
#builder.add_edge("tools", "retriever") | |
builder.add_edge("tools", "assistant") | |
# Compile graph | |
return builder.compile() | |
# test | |
if __name__ == "__main__": | |
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?" | |
# Build the graph | |
graph = build_graph(provider="huggingface") | |
# Run the graph | |
messages = [HumanMessage(content=question)] | |
messages = graph.invoke({"messages": messages}) | |
for m in messages["messages"]: | |
m.pretty_print() | |