Spaces:
Build error
Build error
| import os | |
| from dotenv import load_dotenv | |
| from scrapegraphai.graphs import SmartScraperGraph | |
| from scrapegraphai.utils import prettify_exec_info | |
| from langchain_community.llms import HuggingFaceEndpoint | |
| from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings | |
| import gradio as gr | |
| import subprocess | |
| #Using Mistral Modal | |
| # Ensure Playwright installs required browsers and dependencies | |
| subprocess.run(["playwright", "install"]) | |
| #subprocess.run(["playwright", "install-deps"]) | |
| # Load environment variables | |
| load_dotenv() | |
| HUGGINGFACEHUB_API_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN') | |
| # Initialize the model instances | |
| repo_id = "mistralai/Mistral-7B-Instruct-v0.2" | |
| llm_model_instance = HuggingFaceEndpoint( | |
| repo_id=repo_id, max_length=128, temperature=0.5, token=HUGGINGFACEHUB_API_TOKEN | |
| ) | |
| #Calling Sentence Transformer | |
| embedder_model_instance = HuggingFaceInferenceAPIEmbeddings( | |
| api_key=HUGGINGFACEHUB_API_TOKEN, model_name="sentence-transformers/all-MiniLM-l6-v2" | |
| ) | |
| graph_config = { | |
| "llm": {"model_instance": llm_model_instance}, | |
| "embeddings": {"model_instance": embedder_model_instance} | |
| } | |
| #To Scrape the data and summarize it | |
| def scrape_and_summarize(prompt, source): | |
| smart_scraper_graph = SmartScraperGraph( | |
| prompt=prompt, | |
| source=source, | |
| config=graph_config | |
| ) | |
| result = smart_scraper_graph.run() | |
| exec_info = smart_scraper_graph.get_execution_info() | |
| return result, prettify_exec_info(exec_info) | |
| # Gradio User interface | |
| with gr.Blocks() as demo: | |
| gr.Markdown("A project on WEB-SCRAPING using Mistral model") | |
| gr.Markdown("""Effortlessly extract and condense web content using cutting-edge AI models from the Hugging Face Hub—no coding required! Simply provide your desired prompt and source URL to begin. This no-code solution is inspired by the impressive library ScrapeGraphAI, and while it’s currently a basic demo, we encourage contributions to enhance its utility!""") | |
| #(https://github.com/VinciGit00/Scrapegraph-ai) is suggested by the tutor | |
| with gr.Row(): | |
| with gr.Column(): | |
| model_dropdown = gr.Textbox(label="Model", value="Mistral-7B-Instruct-v0.2, As all-MiniLM-l6-v2") | |
| prompt_input = gr.Textbox(label="Prompt", value="List me all the doctors name and their timing") | |
| source_input = gr.Textbox(label="Source URL", value="https://www.yelp.com/search?find_desc=dentist&find_loc=San+Francisco%2C+CA") | |
| scrape_button = gr.Button("Scrape the data") | |
| with gr.Column(): | |
| result_output = gr.JSON(label="Result") | |
| exec_info_output = gr.Textbox(label="Output Info") | |
| scrape_button.click( | |
| scrape_and_summarize, | |
| inputs=[prompt_input, source_input], | |
| outputs=[result_output, exec_info_output] | |
| ) | |
| # Launch the Gradio app | |
| if __name__ == "__main__": | |
| demo.launch() |