foivospar
commited on
Commit
·
cdf0274
1
Parent(s):
06c6140
add lcm-lora support
Browse files- app.py +41 -6
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -5,6 +5,7 @@ from diffusers import (
|
|
| 5 |
StableDiffusionPipeline,
|
| 6 |
UNet2DConditionModel,
|
| 7 |
DPMSolverMultistepScheduler,
|
|
|
|
| 8 |
)
|
| 9 |
|
| 10 |
from arc2face import CLIPTextModelWrapper, project_face_embs
|
|
@@ -59,6 +60,22 @@ pipeline = StableDiffusionPipeline.from_pretrained(
|
|
| 59 |
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
|
| 60 |
pipeline = pipeline.to(device)
|
| 61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
| 63 |
if randomize_seed:
|
| 64 |
seed = random.randint(0, MAX_SEED)
|
|
@@ -88,10 +105,17 @@ def get_example():
|
|
| 88 |
return case
|
| 89 |
|
| 90 |
def run_example(img_file):
|
| 91 |
-
return generate_image(img_file, 25, 3, 23, 2)
|
| 92 |
|
| 93 |
@spaces.GPU
|
| 94 |
-
def generate_image(image_path, num_steps, guidance_scale, seed, num_images, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
if image_path is None:
|
| 97 |
raise gr.Error(f"Cannot find any input face image! Please upload a face image.")
|
|
@@ -168,11 +192,16 @@ with gr.Blocks(css=css) as demo:
|
|
| 168 |
img_file = gr.Image(label="Upload a photo with a face", type="filepath")
|
| 169 |
|
| 170 |
submit = gr.Button("Submit", variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
|
| 172 |
with gr.Accordion(open=False, label="Advanced Options"):
|
| 173 |
num_steps = gr.Slider(
|
| 174 |
label="Number of sample steps",
|
| 175 |
-
minimum=
|
| 176 |
maximum=100,
|
| 177 |
step=1,
|
| 178 |
value=25,
|
|
@@ -182,7 +211,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 182 |
minimum=0.1,
|
| 183 |
maximum=10.0,
|
| 184 |
step=0.1,
|
| 185 |
-
value=3,
|
| 186 |
)
|
| 187 |
num_images = gr.Slider(
|
| 188 |
label="Number of output images",
|
|
@@ -211,10 +240,16 @@ with gr.Blocks(css=css) as demo:
|
|
| 211 |
api_name=False,
|
| 212 |
).then(
|
| 213 |
fn=generate_image,
|
| 214 |
-
inputs=[img_file, num_steps, guidance_scale, seed, num_images],
|
| 215 |
outputs=[gallery]
|
| 216 |
)
|
| 217 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
|
| 219 |
gr.Examples(
|
| 220 |
examples=get_example(),
|
|
|
|
| 5 |
StableDiffusionPipeline,
|
| 6 |
UNet2DConditionModel,
|
| 7 |
DPMSolverMultistepScheduler,
|
| 8 |
+
LCMScheduler
|
| 9 |
)
|
| 10 |
|
| 11 |
from arc2face import CLIPTextModelWrapper, project_face_embs
|
|
|
|
| 60 |
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
|
| 61 |
pipeline = pipeline.to(device)
|
| 62 |
|
| 63 |
+
# load and disable LCM
|
| 64 |
+
pipeline.load_lora_weights("latent-consistency/lcm-lora-sdv1-5")
|
| 65 |
+
pipeline.disable_lora()
|
| 66 |
+
|
| 67 |
+
def toggle_lcm_ui(value):
|
| 68 |
+
if value:
|
| 69 |
+
return (
|
| 70 |
+
gr.update(minimum=1, maximum=20, step=1, value=3),
|
| 71 |
+
gr.update(minimum=0.1, maximum=10.0, step=0.1, value=1.0),
|
| 72 |
+
)
|
| 73 |
+
else:
|
| 74 |
+
return (
|
| 75 |
+
gr.update(minimum=1, maximum=100, step=1, value=25),
|
| 76 |
+
gr.update(minimum=0.1, maximum=10.0, step=0.1, value=3.0),
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
| 80 |
if randomize_seed:
|
| 81 |
seed = random.randint(0, MAX_SEED)
|
|
|
|
| 105 |
return case
|
| 106 |
|
| 107 |
def run_example(img_file):
|
| 108 |
+
return generate_image(img_file, 25, 3, 23, 2, False)
|
| 109 |
|
| 110 |
@spaces.GPU
|
| 111 |
+
def generate_image(image_path, num_steps, guidance_scale, seed, num_images, use_lcm, progress=gr.Progress(track_tqdm=True)):
|
| 112 |
+
|
| 113 |
+
if use_lcm:
|
| 114 |
+
pipeline.scheduler = LCMScheduler.from_config(pipeline.scheduler.config)
|
| 115 |
+
pipeline.enable_lora()
|
| 116 |
+
else:
|
| 117 |
+
pipeline.disable_lora()
|
| 118 |
+
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
|
| 119 |
|
| 120 |
if image_path is None:
|
| 121 |
raise gr.Error(f"Cannot find any input face image! Please upload a face image.")
|
|
|
|
| 192 |
img_file = gr.Image(label="Upload a photo with a face", type="filepath")
|
| 193 |
|
| 194 |
submit = gr.Button("Submit", variant="primary")
|
| 195 |
+
|
| 196 |
+
use_lcm = gr.Checkbox(
|
| 197 |
+
label="Use LCM-LoRA to accelerate sampling", value=False,
|
| 198 |
+
info="Reduces sampling steps significantly, but may decrease quality.",
|
| 199 |
+
)
|
| 200 |
|
| 201 |
with gr.Accordion(open=False, label="Advanced Options"):
|
| 202 |
num_steps = gr.Slider(
|
| 203 |
label="Number of sample steps",
|
| 204 |
+
minimum=1,
|
| 205 |
maximum=100,
|
| 206 |
step=1,
|
| 207 |
value=25,
|
|
|
|
| 211 |
minimum=0.1,
|
| 212 |
maximum=10.0,
|
| 213 |
step=0.1,
|
| 214 |
+
value=3.0,
|
| 215 |
)
|
| 216 |
num_images = gr.Slider(
|
| 217 |
label="Number of output images",
|
|
|
|
| 240 |
api_name=False,
|
| 241 |
).then(
|
| 242 |
fn=generate_image,
|
| 243 |
+
inputs=[img_file, num_steps, guidance_scale, seed, num_images, use_lcm],
|
| 244 |
outputs=[gallery]
|
| 245 |
)
|
| 246 |
+
|
| 247 |
+
use_lcm.input(
|
| 248 |
+
fn=toggle_lcm_ui,
|
| 249 |
+
inputs=[use_lcm],
|
| 250 |
+
outputs=[num_steps, guidance_scale],
|
| 251 |
+
queue=False,
|
| 252 |
+
)
|
| 253 |
|
| 254 |
gr.Examples(
|
| 255 |
examples=get_example(),
|
requirements.txt
CHANGED
|
@@ -1,8 +1,9 @@
|
|
| 1 |
numpy<1.24.0
|
| 2 |
torch==2.0.1
|
| 3 |
torchvision==0.15.2
|
| 4 |
-
diffusers==0.
|
| 5 |
transformers==4.34.1
|
|
|
|
| 6 |
accelerate
|
| 7 |
insightface
|
| 8 |
onnxruntime-gpu
|
|
|
|
| 1 |
numpy<1.24.0
|
| 2 |
torch==2.0.1
|
| 3 |
torchvision==0.15.2
|
| 4 |
+
diffusers==0.23.0
|
| 5 |
transformers==4.34.1
|
| 6 |
+
peft
|
| 7 |
accelerate
|
| 8 |
insightface
|
| 9 |
onnxruntime-gpu
|