import gradio as gr import pickle import numpy as np import joblib # Load the trained model model = joblib.load("random_forest_model.pkl") # Prediction function def predict_rainfall(temperature, humidity, cloud, sunshine, wind_direction): features = np.array([[temperature, humidity, cloud, sunshine, wind_direction]]) prediction = model.predict(features) message = "yes Rain is Possibble" if prediction[0] == 1 else "No Rain is not Possibble" return message # Gradio Interface interface = gr.Interface( fn=predict_rainfall, inputs=[ gr.Number(label="Temperature (°C)"), gr.Number(label="Humidity (%)"), gr.Number(label="Cloud (%)"), gr.Number(label="Sunshine (hours)"), gr.Number(label="Wind Direction (°)") ], outputs=gr.Text(label="Rain Prediction"), title="Rainfall Prediction App", description="Enter weather data to predict if rain is possible" ) interface.launch()