import gradio as gr from transformers import VitsModel, AutoTokenizer import torch import scipy.io.wavfile import tempfile # Load the Somali TTS model model = VitsModel.from_pretrained("facebook/mms-tts-som") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-som") def somali_text_to_speech(text): inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs) waveform = output.waveform.squeeze().cpu().numpy() # Save waveform to a temporary WAV file with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp: scipy.io.wavfile.write(tmp.name, rate=model.config.sampling_rate, data=waveform) return tmp.name # Launch Gradio Interface gr.Interface( fn=somali_text_to_speech, inputs=gr.Textbox(label="Enter Somali Text"), outputs=gr.Audio(label="Generated Somali Speech"), title="Somali Text-to-Speech", description="Type Somali text and hear it spoken using Hugging Face's VitsModel." ).launch(share=True)