Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,203 +1,145 @@
|
|
1 |
-
import os
|
2 |
import gradio as gr
|
3 |
-
import huggingface_hub
|
4 |
-
import numpy as np
|
5 |
-
import onnxruntime as rt
|
6 |
-
import pandas as pd
|
7 |
from PIL import Image
|
8 |
from huggingface_hub import login
|
9 |
|
|
|
|
|
|
|
10 |
# 模型配置
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
|
16 |
-
|
17 |
-
|
|
|
18 |
else:
|
19 |
-
|
20 |
-
|
21 |
-
# 标签处理配置
|
22 |
-
kaomojis = [
|
23 |
-
"0_0",
|
24 |
-
"(o)_(o)",
|
25 |
-
"+_+",
|
26 |
-
"+_-",
|
27 |
-
"._.",
|
28 |
-
"<o>_<o>",
|
29 |
-
"<|>_<|>",
|
30 |
-
"=_=",
|
31 |
-
">_<",
|
32 |
-
"3_3",
|
33 |
-
"6_9",
|
34 |
-
">_o",
|
35 |
-
"@_@",
|
36 |
-
"^_^",
|
37 |
-
"o_o",
|
38 |
-
"u_u",
|
39 |
-
"x_x",
|
40 |
-
"|_|",
|
41 |
-
"||_||",
|
42 |
-
]
|
43 |
|
|
|
|
|
|
|
44 |
class Tagger:
|
45 |
def __init__(self):
|
46 |
-
self.
|
47 |
-
self.
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
self.categories = {
|
70 |
-
"rating": np.where(tags_df["category"] == 9)[0],
|
71 |
-
"general": np.where(tags_df["category"] == 0)[0],
|
72 |
-
"character": np.where(tags_df["category"] == 4)[0]
|
73 |
-
}
|
74 |
-
|
75 |
-
# 加载ONNX模型
|
76 |
-
self.model = rt.InferenceSession(model_path)
|
77 |
-
self.model_size = self.model.get_inputs()[0].shape[1]
|
78 |
-
except huggingface_hub.utils.HfHubHTTPError as e:
|
79 |
-
if "401" in str(e):
|
80 |
-
raise RuntimeError(
|
81 |
-
"模型下载认证失败,请:\n"
|
82 |
-
"1. 访问https://huggingface.co/SmilingWolf/wd-swinv2-tagger-v3\n"
|
83 |
-
"2. 点击Agree and continue\n"
|
84 |
-
"3. 确保HF_TOKEN已正确设置"
|
85 |
-
)
|
86 |
-
else:
|
87 |
-
raise
|
88 |
-
|
89 |
-
def _preprocess(self, img):
|
90 |
-
"""图像预处理"""
|
91 |
-
# 转换为RGB
|
92 |
if img.mode != "RGB":
|
93 |
img = img.convert("RGB")
|
94 |
-
|
95 |
-
|
96 |
-
size
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
"""
|
109 |
-
|
110 |
-
img_data = self._preprocess(img)[np.newaxis]
|
111 |
-
|
112 |
-
# 运行模型
|
113 |
-
input_name = self.model.get_inputs()[0].name
|
114 |
-
outputs = self.model.run(None, {input_name: img_data})[0][0]
|
115 |
-
|
116 |
-
# 组织结果
|
117 |
-
results = {
|
118 |
-
"ratings": {},
|
119 |
-
"general": {},
|
120 |
-
"characters": {}
|
121 |
-
}
|
122 |
-
|
123 |
-
# 处理评分标签
|
124 |
for idx in self.categories["rating"]:
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
# 处理通用标签
|
129 |
for idx in self.categories["general"]:
|
130 |
-
if outputs[idx] >
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
# 处理角色标签
|
135 |
for idx in self.categories["character"]:
|
136 |
-
if outputs[idx] >
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
gr.Markdown("# 🖼️ AI图像标签分析器")
|
152 |
-
gr.Markdown("上传图片自动分析图像内容标签")
|
153 |
-
|
154 |
with gr.Row():
|
155 |
with gr.Column(scale=1):
|
156 |
-
|
157 |
-
with gr.Accordion("高级设置", open=False):
|
158 |
-
|
159 |
-
|
160 |
-
info="值越高标签越少但更准确")
|
161 |
char_slider = gr.Slider(0, 1, 0.85,
|
162 |
-
|
163 |
-
|
164 |
-
|
|
|
|
|
|
|
165 |
|
166 |
with gr.Column(scale=2):
|
167 |
with gr.Tabs():
|
168 |
-
with gr.TabItem("🏷️
|
169 |
-
|
170 |
-
with gr.TabItem("👤
|
171 |
-
|
172 |
-
with gr.TabItem("⭐
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
#
|
179 |
-
def
|
180 |
-
tagger
|
181 |
-
|
182 |
-
|
183 |
-
#
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
|
|
188 |
return {
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
}
|
194 |
|
195 |
-
|
196 |
-
|
197 |
-
inputs=[
|
198 |
-
outputs=[
|
199 |
)
|
200 |
|
201 |
-
#
|
|
|
|
|
202 |
if __name__ == "__main__":
|
203 |
-
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
1 |
+
import os, json
|
2 |
import gradio as gr
|
3 |
+
import huggingface_hub, numpy as np, onnxruntime as rt, pandas as pd
|
|
|
|
|
|
|
4 |
from PIL import Image
|
5 |
from huggingface_hub import login
|
6 |
|
7 |
+
from translator import translate_texts
|
8 |
+
|
9 |
+
# ------------------------------------------------------------------
|
10 |
# 模型配置
|
11 |
+
# ------------------------------------------------------------------
|
12 |
+
MODEL_REPO = "SmilingWolf/wd-swinv2-tagger-v3"
|
13 |
+
MODEL_FILENAME = "model.onnx"
|
14 |
+
LABEL_FILENAME = "selected_tags.csv"
|
15 |
|
16 |
+
HF_TOKEN = os.environ.get("HF_TOKEN", "")
|
17 |
+
if HF_TOKEN:
|
18 |
+
login(token=HF_TOKEN)
|
19 |
else:
|
20 |
+
print("⚠️ 未检测到 HF_TOKEN,私有模型可能下载失败")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
# ------------------------------------------------------------------
|
23 |
+
# Tagger 类
|
24 |
+
# ------------------------------------------------------------------
|
25 |
class Tagger:
|
26 |
def __init__(self):
|
27 |
+
self.hf_token = HF_TOKEN
|
28 |
+
self._load_model_and_labels()
|
29 |
+
|
30 |
+
def _load_model_and_labels(self):
|
31 |
+
label_path = huggingface_hub.hf_hub_download(
|
32 |
+
MODEL_REPO, LABEL_FILENAME, token=self.hf_token
|
33 |
+
)
|
34 |
+
model_path = huggingface_hub.hf_hub_download(
|
35 |
+
MODEL_REPO, MODEL_FILENAME, token=self.hf_token
|
36 |
+
)
|
37 |
+
|
38 |
+
tags_df = pd.read_csv(label_path)
|
39 |
+
self.tag_names = tags_df["name"].tolist()
|
40 |
+
self.categories = {
|
41 |
+
"rating": np.where(tags_df["category"] == 9)[0],
|
42 |
+
"general": np.where(tags_df["category"] == 0)[0],
|
43 |
+
"character": np.where(tags_df["category"] == 4)[0],
|
44 |
+
}
|
45 |
+
self.model = rt.InferenceSession(model_path)
|
46 |
+
self.input_size = self.model.get_inputs()[0].shape[1]
|
47 |
+
|
48 |
+
# ------------------------- preprocess -------------------------
|
49 |
+
def _preprocess(self, img: Image.Image) -> np.ndarray:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
if img.mode != "RGB":
|
51 |
img = img.convert("RGB")
|
52 |
+
size = max(img.size)
|
53 |
+
canvas = Image.new("RGB", (size, size), (255, 255, 255))
|
54 |
+
canvas.paste(img, ((size - img.width)//2, (size - img.height)//2))
|
55 |
+
if size != self.input_size:
|
56 |
+
canvas = canvas.resize((self.input_size, self.input_size), Image.BICUBIC)
|
57 |
+
return np.array(canvas)[:, :, ::-1].astype(np.float32) # to BGR
|
58 |
+
|
59 |
+
# --------------------------- predict --------------------------
|
60 |
+
def predict(self, img: Image.Image,
|
61 |
+
gen_th: float = 0.35,
|
62 |
+
char_th: float = 0.85):
|
63 |
+
inp_name = self.model.get_inputs()[0].name
|
64 |
+
outputs = self.model.run(None, {inp_name: self._preprocess(img)[None, ...]})[0][0]
|
65 |
+
|
66 |
+
res = {"ratings": {}, "general": {}, "characters": {}}
|
67 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
for idx in self.categories["rating"]:
|
69 |
+
res["ratings"][self.tag_names[idx].replace("_", " ")] = float(outputs[idx])
|
70 |
+
|
|
|
|
|
71 |
for idx in self.categories["general"]:
|
72 |
+
if outputs[idx] > gen_th:
|
73 |
+
res["general"][self.tag_names[idx].replace("_", " ")] = float(outputs[idx])
|
74 |
+
|
|
|
|
|
75 |
for idx in self.categories["character"]:
|
76 |
+
if outputs[idx] > char_th:
|
77 |
+
res["characters"][self.tag_names[idx].replace("_", " ")] = float(outputs[idx])
|
78 |
+
|
79 |
+
res["general"] = dict(sorted(res["general"].items(),
|
80 |
+
key=lambda kv: kv[1],
|
81 |
+
reverse=True))
|
82 |
+
return res
|
83 |
+
|
84 |
+
# ------------------------------------------------------------------
|
85 |
+
# Gradio UI
|
86 |
+
# ------------------------------------------------------------------
|
87 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="AI 图像标签分析器 + 翻译") as demo:
|
88 |
+
gr.Markdown("# 🖼️ AI 图像标签分析器")
|
89 |
+
gr.Markdown("上传图片自动识别标签,并可一键翻译成中文")
|
90 |
+
|
|
|
|
|
|
|
91 |
with gr.Row():
|
92 |
with gr.Column(scale=1):
|
93 |
+
img_in = gr.Image(type="pil", label="上传图片")
|
94 |
+
with gr.Accordion("⚙️ 高级设置", open=False):
|
95 |
+
gen_slider = gr.Slider(0, 1, 0.35,
|
96 |
+
label="通用标签阈值", info="越高→标签更少更准")
|
|
|
97 |
char_slider = gr.Slider(0, 1, 0.85,
|
98 |
+
label="角色标签阈值", info="推荐保持较高阈值")
|
99 |
+
lang_drop = gr.Dropdown(["zh", "en"], value="zh",
|
100 |
+
label="翻译目标语言",
|
101 |
+
info="当前仅内置中 / 英")
|
102 |
+
|
103 |
+
btn = gr.Button("开始分析", variant="primary")
|
104 |
|
105 |
with gr.Column(scale=2):
|
106 |
with gr.Tabs():
|
107 |
+
with gr.TabItem("🏷️ 通用标签 (英文)"):
|
108 |
+
out_general = gr.Label(label="General Tags")
|
109 |
+
with gr.TabItem("👤 角色标签 (英文)"):
|
110 |
+
out_char = gr.Label(label="Character Tags")
|
111 |
+
with gr.TabItem("⭐ 评分标签 (英文)"):
|
112 |
+
out_rating = gr.Label(label="Rating Tags")
|
113 |
+
with gr.TabItem("🌐 翻译结果"):
|
114 |
+
out_trans = gr.Textbox(label="翻译后的标签",
|
115 |
+
placeholder="翻译结果显示在此处")
|
116 |
+
|
117 |
+
# ----------------- 处理回调 -----------------
|
118 |
+
def process(img, g_th, c_th, tgt_lang):
|
119 |
+
tagger = Tagger()
|
120 |
+
res = tagger.predict(img, g_th, c_th)
|
121 |
+
|
122 |
+
# =========== 组织翻译 ===========
|
123 |
+
tags_to_translate = list(res["general"].keys()) + list(res["characters"].keys())
|
124 |
+
translations = translate_texts(tags_to_translate, src_lang="auto", tgt_lang=tgt_lang)
|
125 |
+
# 拼接字符串
|
126 |
+
trans_str = ", ".join(translations)
|
127 |
+
|
128 |
return {
|
129 |
+
out_general: res["general"],
|
130 |
+
out_char: res["characters"],
|
131 |
+
out_rating: res["ratings"],
|
132 |
+
out_trans: trans_str
|
133 |
}
|
134 |
|
135 |
+
btn.click(
|
136 |
+
process,
|
137 |
+
inputs=[img_in, gen_slider, char_slider, lang_drop],
|
138 |
+
outputs=[out_general, out_char, out_rating, out_trans]
|
139 |
)
|
140 |
|
141 |
+
# ------------------------------------------------------------------
|
142 |
+
# 启动
|
143 |
+
# ------------------------------------------------------------------
|
144 |
if __name__ == "__main__":
|
145 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|