import os import json import gradio as gr import huggingface_hub import numpy as np import onnxruntime as rt import pandas as pd from PIL import Image from huggingface_hub import login from translator import translate_texts # ------------------------------------------------------------------ # 模型配置 # ------------------------------------------------------------------ MODEL_REPO = "SmilingWolf/wd-eva02-large-tagger-v3" MODEL_FILENAME = "model.onnx" LABEL_FILENAME = "selected_tags.csv" HF_TOKEN = os.environ.get("HF_TOKEN", "") if HF_TOKEN: login(token=HF_TOKEN) else: print("⚠️ 未检测到 HF_TOKEN,私有模型可能下载失败") # ------------------------------------------------------------------ # Tagger 类 (全局实例化) # ------------------------------------------------------------------ class Tagger: def __init__(self): self.hf_token = HF_TOKEN self.tag_names = [] self.categories = {} self.model = None self.input_size = 0 self._load_model_and_labels() def _load_model_and_labels(self): try: label_path = huggingface_hub.hf_hub_download( MODEL_REPO, LABEL_FILENAME, token=self.hf_token, resume_download=True ) model_path = huggingface_hub.hf_hub_download( MODEL_REPO, MODEL_FILENAME, token=self.hf_token, resume_download=True ) tags_df = pd.read_csv(label_path) self.tag_names = tags_df["name"].tolist() self.categories = { "rating": np.where(tags_df["category"] == 9)[0], "general": np.where(tags_df["category"] == 0)[0], "character": np.where(tags_df["category"] == 4)[0], } self.model = rt.InferenceSession(model_path) self.input_size = self.model.get_inputs()[0].shape[1] print("✅ 模型和标签加载成功") except Exception as e: print(f"❌ 模型或标签加载失败: {e}") raise RuntimeError(f"模型初始化失败: {e}") # ------------------------- preprocess ------------------------- def _preprocess(self, img: Image.Image) -> np.ndarray: if img is None: raise ValueError("输入图像不能为空") if img.mode != "RGB": img = img.convert("RGB") size = max(img.size) canvas = Image.new("RGB", (size, size), (255, 255, 255)) canvas.paste(img, ((size - img.width) // 2, (size - img.height) // 2)) if size != self.input_size: canvas = canvas.resize((self.input_size, self.input_size), Image.BICUBIC) return np.array(canvas)[:, :, ::-1].astype(np.float32) # to BGR # --------------------------- predict -------------------------- def predict(self, img: Image.Image, gen_th: float = 0.35, char_th: float = 0.85): if self.model is None: raise RuntimeError("模型未成功加载,无法进行预测。") inp_name = self.model.get_inputs()[0].name outputs = self.model.run(None, {inp_name: self._preprocess(img)[None, ...]})[0][0] res = {"ratings": {}, "general": {}, "characters": {}} tag_categories_for_translation = {"ratings": [], "general": [], "characters": []} for idx in self.categories["rating"]: tag_name = self.tag_names[idx].replace("_", " ") res["ratings"][tag_name] = float(outputs[idx]) tag_categories_for_translation["ratings"].append(tag_name) for idx in self.categories["general"]: if outputs[idx] > gen_th: tag_name = self.tag_names[idx].replace("_", " ") res["general"][tag_name] = float(outputs[idx]) tag_categories_for_translation["general"].append(tag_name) for idx in self.categories["character"]: if outputs[idx] > char_th: tag_name = self.tag_names[idx].replace("_", " ") res["characters"][tag_name] = float(outputs[idx]) tag_categories_for_translation["characters"].append(tag_name) res["general"] = dict(sorted(res["general"].items(), key=lambda kv: kv[1], reverse=True)) res["characters"] = dict(sorted(res["characters"].items(), key=lambda kv: kv[1], reverse=True)) res["ratings"] = dict(sorted(res["ratings"].items(), key=lambda kv: kv[1], reverse=True)) tag_categories_for_translation["general"] = list(res["general"].keys()) tag_categories_for_translation["characters"] = list(res["characters"].keys()) tag_categories_for_translation["ratings"] = list(res["ratings"].keys()) return res, tag_categories_for_translation # 全局 Tagger 实例 try: tagger_instance = Tagger() except RuntimeError as e: print(f"应用启动时Tagger初始化失败: {e}") tagger_instance = None # 允许应用启动,但在处理时会失败 # ------------------------------------------------------------------ # Gradio UI # ------------------------------------------------------------------ custom_css = """ .label-container { max-height: 300px; overflow-y: auto; border: 1px solid #ddd; padding: 10px; border-radius: 5px; background-color: #f9f9f9; } .tag-item { display: flex; justify-content: space-between; align-items: center; margin: 2px 0; padding: 2px 5px; border-radius: 3px; background-color: #fff; transition: background-color 0.2s; } .tag-item:hover { background-color: #f0f0f0; } .tag-en { font-weight: bold; color: #333; cursor: pointer; /* Indicates clickable */ } .tag-zh { color: #666; margin-left: 10px; } .tag-score { color: #999; font-size: 0.9em; } .btn-analyze-container { /* Custom class for analyze button container */ margin-top: 15px; margin-bottom: 15px; } """ _js_functions = """ function copyToClipboard(text) { // --- 调试信息 --- console.log('copyToClipboard function was called.'); console.log('Received text:', text); // console.trace(); // 如果需要更详细的调用栈信息,可以取消这行注释 // --- 保护性检查 --- // 如果 text 未定义或为 null,则不执行后续操作,并打印警告 if (typeof text === 'undefined' || text === null) { console.warn('copyToClipboard was called with undefined or null text. Aborting this specific copy operation.'); // 在这种情况下,我们不应该尝试复制,也不应该显示“已复制”的提示 return; } navigator.clipboard.writeText(text).then(() => { // console.log('Tag copied to clipboard: ' + text); // 成功复制的日志(可选) const feedback = document.createElement('div'); // 确保 text 是字符串类型,再进行 substring 操作 let displayText = String(text); // 将 text 转换为字符串以防万一 displayText = displayText.substring(0, 30) + (displayText.length > 30 ? '...' : ''); feedback.textContent = '已复制: ' + displayText; feedback.style.position = 'fixed'; feedback.style.bottom = '20px'; feedback.style.left = '50%'; feedback.style.transform = 'translateX(-50%)'; feedback.style.backgroundColor = '#4CAF50'; feedback.style.color = 'white'; feedback.style.padding = '10px 20px'; feedback.style.borderRadius = '5px'; feedback.style.zIndex = '10000'; feedback.style.transition = 'opacity 0.5s ease-out'; document.body.appendChild(feedback); setTimeout(() => { feedback.style.opacity = '0'; setTimeout(() => { if (document.body.contains(feedback)) { // 确保元素还在DOM中 document.body.removeChild(feedback); } }, 500); }, 1500); }).catch(err => { console.error('Failed to copy tag. Error:', err, 'Attempted to copy text:', text); // 可以考虑也给用户一个错误提示,但原版 alert 可能体验不佳 // alert('复制失败: ' + err); const errorFeedback = document.createElement('div'); errorFeedback.textContent = '复制操作失败!'; // 更友好的错误提示 errorFeedback.style.position = 'fixed'; errorFeedback.style.bottom = '20px'; errorFeedback.style.left = '50%'; errorFeedback.style.transform = 'translateX(-50%)'; errorFeedback.style.backgroundColor = '#D32F2F'; // 红色背景表示错误 errorFeedback.style.color = 'white'; errorFeedback.style.padding = '10px 20px'; errorFeedback.style.borderRadius = '5px'; errorFeedback.style.zIndex = '10000'; errorFeedback.style.transition = 'opacity 0.5s ease-out'; document.body.appendChild(errorFeedback); setTimeout(() => { errorFeedback.style.opacity = '0'; setTimeout(() => { if (document.body.contains(errorFeedback)) { document.body.removeChild(errorFeedback); } }, 500); }, 2500); }); } """ with gr.Blocks(theme=gr.themes.Soft(), title="AI 图像标签分析器", css=custom_css, js=_js_functions) as demo: gr.Markdown("# 🖼️ AI 图像标签分析器") gr.Markdown("上传图片自动识别标签,支持中英文显示和一键复制。[NovelAI在线绘画](https://nai.idlecloud.cc/)") state_res = gr.State({}) state_translations_dict = gr.State({}) state_tag_categories_for_translation = gr.State({}) with gr.Row(): with gr.Column(scale=1): img_in = gr.Image(type="pil", label="上传图片", height=300) btn = gr.Button("🚀 开始分析", variant="primary", elem_classes=["btn-analyze-container"]) with gr.Accordion("⚙️ 高级设置", open=False): gen_slider = gr.Slider(0, 1, value=0.35, step=0.01, label="通用标签阈值", info="越高 → 标签更少更准") char_slider = gr.Slider(0, 1, value=0.85, step=0.01, label="角色标签阈值", info="推荐保持较高阈值") show_tag_scores = gr.Checkbox(True, label="在列表中显示标签置信度") with gr.Accordion("📊 标签汇总设置", open=True): gr.Markdown("选择要包含在下方汇总文本框中的标签类别:") with gr.Row(): sum_general = gr.Checkbox(True, label="通用标签", min_width=50) sum_char = gr.Checkbox(True, label="角色标签", min_width=50) sum_rating = gr.Checkbox(False, label="评分标签", min_width=50) sum_sep = gr.Dropdown(["逗号", "换行", "空格"], value="逗号", label="标签之间的分隔符") sum_show_zh = gr.Checkbox(False, label="在汇总中显示中文翻译") processing_info = gr.Markdown("", visible=False) with gr.Column(scale=2): with gr.Tabs(): with gr.TabItem("🏷️ 通用标签"): out_general = gr.HTML(label="General Tags") with gr.TabItem("👤 角色标签"): gr.Markdown("
提示:角色标签推测基于截至2024年2月的数据。
") out_char = gr.HTML(label="Character Tags") with gr.TabItem("⭐ 评分标签"): out_rating = gr.HTML(label="Rating Tags") gr.Markdown("### 标签汇总结果") out_summary = gr.Textbox( label="标签汇总", placeholder="分析完成后,此处将显示汇总的英文标签...", lines=5, show_copy_button=True ) # ----------------- 辅助函数 ----------------- def format_tags_html(tags_dict, translations_list, category_name, show_scores=True, show_translation_in_list=True): if not tags_dict: return "暂无标签
" html = '分析中...
"), # General gr.HTML(value="分析中...
"), # Character gr.HTML(value="分析中...
"), # Rating gr.update(value="分析中,请稍候..."), # Summary {}, {}, {} # Clear states initially ) try: # 1. Predict tags res, tag_categories_original_order = tagger_instance.predict(img, g_th, c_th) all_tags_to_translate = [] for cat_key in ["general", "characters", "ratings"]: all_tags_to_translate.extend(tag_categories_original_order.get(cat_key, [])) all_translations_flat = [] if all_tags_to_translate: all_translations_flat = translate_texts(all_tags_to_translate, src_lang="auto", tgt_lang="zh") current_translations_dict = {} offset = 0 for cat_key in ["general", "characters", "ratings"]: cat_original_tags = tag_categories_original_order.get(cat_key, []) num_tags_in_cat = len(cat_original_tags) if num_tags_in_cat > 0: current_translations_dict[cat_key] = all_translations_flat[offset : offset + num_tags_in_cat] offset += num_tags_in_cat else: current_translations_dict[cat_key] = [] general_html = format_tags_html(res.get("general", {}), current_translations_dict.get("general", []), "general", s_scores, True) char_html = format_tags_html(res.get("characters", {}), current_translations_dict.get("characters", []), "characters", s_scores, True) rating_html = format_tags_html(res.get("ratings", {}), current_translations_dict.get("ratings", []), "ratings", s_scores, True) summary_text = generate_summary_text_content( res, current_translations_dict, s_gen, s_char, s_rat, s_sep, s_zh_in_sum ) yield ( gr.update(interactive=True, value="🚀 开始分析"), gr.update(visible=True, value="✅ 分析完成!"), general_html, char_html, rating_html, gr.update(value=summary_text), res, current_translations_dict, tag_categories_original_order ) except Exception as e: import traceback tb_str = traceback.format_exc() print(f"处理时发生错误: {e}\n{tb_str}") yield ( gr.update(interactive=True, value="🚀 开始分析"), gr.update(visible=True, value=f"❌ 处理失败: {str(e)}"), "处理出错
", "处理出错
", "处理出错
", gr.update(value=f"错误: {str(e)}", placeholder="分析失败..."), {}, {}, {} ) # ----------------- 更新汇总文本的回调 ----------------- def update_summary_display( s_gen, s_char, s_rat, s_sep, s_zh_in_sum, current_res_from_state, current_translations_from_state ): if not current_res_from_state: return gr.update(placeholder="请先完成一次图像分析以生成汇总。", value="") new_summary_text = generate_summary_text_content( current_res_from_state, current_translations_from_state, s_gen, s_char, s_rat, s_sep, s_zh_in_sum ) return gr.update(value=new_summary_text) # ----------------- 绑定事件 ----------------- btn.click( process_image_and_generate_outputs, inputs=[ img_in, gen_slider, char_slider, show_tag_scores, sum_general, sum_char, sum_rating, sum_sep, sum_show_zh ], outputs=[ btn, processing_info, out_general, out_char, out_rating, out_summary, state_res, state_translations_dict, state_tag_categories_for_translation ], # show_progress="full" # Gradio's built-in progress ) summary_controls = [sum_general, sum_char, sum_rating, sum_sep, sum_show_zh] for ctrl in summary_controls: ctrl.change( fn=update_summary_display, inputs=summary_controls + [state_res, state_translations_dict], outputs=[out_summary], # show_progress=False # Typically fast, no need for progress indicator ) # ------------------------------------------------------------------ # 启动 # ------------------------------------------------------------------ if __name__ == "__main__": if tagger_instance is None: print("CRITICAL: Tagger 未能初始化,应用功能将受限。请检查之前的错误信息。") demo.launch(server_name="0.0.0.0", server_port=7860)