Spaces:
Runtime error
Runtime error
File size: 6,566 Bytes
b519cf9 88b0888 f6db68b b519cf9 88b0888 b519cf9 d772cf1 f6db68b 88b0888 d772cf1 88b0888 d772cf1 82009ff d772cf1 f6db68b 82009ff f6db68b 82009ff f6db68b 82009ff f6db68b d772cf1 88b0888 d772cf1 88b0888 f6db68b 88b0888 f6db68b 82009ff f6db68b 82009ff f6db68b 82009ff f6db68b 82009ff f6db68b 82009ff f6db68b 82009ff f6db68b 88b0888 f6db68b 88b0888 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
---
title: relation_extraction
datasets:
- none
tags:
- evaluate
- metric
description: "This metric is used for evaluating the F1 accuracy of input references and predictions."
sdk: gradio
sdk_version: 3.19.1
app_file: app.py
pinned: false
---
# Metric Card for relation_extraction evalutation
This metric is used for evaluating the quality of relation extraction output. By calculating the Micro and Macro F1 score of every relation extraction outputs to ensure the quality.
## Metric Description
This metric can be used in relation extraction evaluation.
## How to Use
This metric takes 2 inputs, prediction and references(ground truth). Both of them are a list of list of dictionary of entity's name and entity's type:
```
>>> import evaluate
load metric
>>> metric_path = "Ikala-allen/relation_extraction"
>>> module = evaluate.load(metric_path)
Define your predictions and references
Example references (ground truth)
>>> references = [
... [
... {"head": "phip igments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
... {"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
... ]
... ]
Example predictions
>>> predictions = [
... [
... {"head": "phipigments", "head_type": "product", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
... {"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
... ]
... ]
Calculate evaluation scores using the loaded metric
>>> evaluation_scores = module.compute(predictions=predictions, references=references)
>>> print(evaluation_scores)
{'sell': {'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0}, 'ALL': {'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0, 'Macro_f1': 50.0, 'Macro_p': 50.0, 'Macro_r': 50.0}}
```
### Inputs
- **predictions** (`list` of `list`s of `dictionary`s): relation and its type of prediction
- **references** (`list` of `list`s of `dictionary`s): references for each relation and its type.
-
### Output Values
**output** (`dictionary` of `dictionary`s) with multiple key-value pairs
- **sell** (`dictionary`): score of type sell
- **tp** : true positive count
- **fp** : false positive count
- **fn** : false negative count
- **p** : precision
- **r** : recall
- **f1** : micro f1 score
- **ALL** (`dictionary`): score of all of the type (sell and belongs to)
- **tp** : true positive count
- **fp** : false positive count
- **fn** : false negative count
- **p** : precision
- **r** : recall
- **f1** : micro f1 score
- **Macro_f1** : macro f1 score
- **Macro_p** : macro precision
- **Macro_r** : macro recall
-
Output Example:
```python
{'sell': {'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0}, 'ALL': {'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0, 'Macro_f1': 50.0, 'Macro_p': 50.0, 'Macro_r': 50.0}}
```
Macro_f1、Macro_p、Macro_r、p、r、f1 are always a number between 0 and 1. And tp、fp、fn depend on how many data inputs.
### Examples
Example of only one prediction and reference:
```python
>>> metric_path = "Ikala-allen/relation_extraction"
>>> module = evaluate.load(metric_path)
Define your predictions and references
Example references (ground truth)
>>> references = [
... [
... {"head": "phip igments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
... {"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
... ]
... ]
Example predictions
>>> predictions = [
... [
... {"head": "phipigments", "head_type": "product", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
... {"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
... ]
... ]
Calculate evaluation scores using the loaded metric
>>> evaluation_scores = module.compute(predictions=predictions, references=references)
>>> print(evaluation_scores)
{'sell': {'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0}, 'ALL': {'tp': 1, 'fp': 1, 'fn': 1, 'p': 50.0, 'r': 50.0, 'f1': 50.0, 'Macro_f1': 50.0, 'Macro_p': 50.0, 'Macro_r': 50.0}}
```
Example with two or more prediction and reference:
```python
>>> metric_path = "Ikala-allen/relation_extraction"
>>> module = evaluate.load(metric_path)
Define your predictions and references
Example references (ground truth)
>>> references = [
... [
... {"head": "phip igments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
... {"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
... ],[
... {'head': 'SABONTAIWAN', 'tail': '大馬士革玫瑰有機光燦系列', 'head_type': 'brand', 'tail_type': 'product', 'type': 'sell'},
... {'head': 'SABONTAIWAN', 'tail': '大馬士革玫瑰有機光燦系列', 'head_type': 'brand', 'tail_type': 'product', 'type': 'sell'}
... ]
... ]
Example predictions
>>> predictions = [
... [
... {"head": "phipigments", "head_type": "product", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
... {"head": "tinadaviespigments", "head_type": "brand", "type": "sell", "tail": "國際認證之色乳", "tail_type": "product"},
... ],[
... {'head': 'SABONTAIWAN', 'tail': '大馬士革玫瑰有機光燦系列', 'head_type': 'brand', 'tail_type': 'product', 'type': 'sell'},
... {'head': 'SNTAIWAN', 'tail': '大馬士革玫瑰有機光燦系列', 'head_type': 'brand', 'tail_type': 'product', 'type': 'sell'}
... ]
... ]
Calculate evaluation scores using the loaded metric
>>> evaluation_scores = module.compute(predictions=predictions, references=references)
>>> print(evaluation_scores)
{'sell': {'tp': 2, 'fp': 2, 'fn': 1, 'p': 50.0, 'r': 66.66666666666667, 'f1': 57.142857142857146}, 'ALL': {'tp': 2, 'fp': 2, 'fn': 1, 'p': 50.0, 'r': 66.66666666666667, 'f1': 57.142857142857146, 'Macro_f1': 57.142857142857146, 'Macro_p': 50.0, 'Macro_r': 66.66666666666667}}
```
## Limitations and Bias
This metric has multiple known limitations:
## Citation
*Cite the source where this metric was introduced.*
## Further References
*Add any useful further references.* |