Spaces:
Running
on
Zero
Running
on
Zero
Upload app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,62 @@
|
|
1 |
import os
|
2 |
-
|
3 |
import gradio as gr
|
4 |
from download_url import download_text_and_title
|
5 |
from cache_system import CacheHandler
|
6 |
-
from gradio_client import Client
|
7 |
from collections import OrderedDict
|
8 |
-
from typing import Any
|
9 |
import datetime
|
|
|
10 |
|
11 |
-
|
12 |
-
server = os.environ.get("SERVER") or True
|
13 |
auth_token = os.environ.get("TOKEN") or True
|
|
|
14 |
|
15 |
-
client = Client(server, hf_token=auth_token, verbose=False)
|
16 |
|
17 |
total_runs = 0
|
18 |
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
class HuggingFaceDatasetSaver_custom(gr.HuggingFaceDatasetSaver):
|
21 |
def _deserialize_components(
|
22 |
self,
|
@@ -88,6 +128,7 @@ def generate_text(
|
|
88 |
try:
|
89 |
title, text, url = download_text_and_title(url)
|
90 |
except Exception as e:
|
|
|
91 |
title = None
|
92 |
text = None
|
93 |
|
@@ -113,18 +154,13 @@ def generate_text(
|
|
113 |
progress(0.5, desc="🤖 Leyendo noticia")
|
114 |
|
115 |
try:
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
mode, # float (numeric value between 0 and 100) in '🎚️ Nivel de resumen' Slider component
|
121 |
-
api_name="/predict",
|
122 |
-
)
|
123 |
-
|
124 |
-
for o in temp:
|
125 |
-
yield title, o, text
|
126 |
|
127 |
except Exception as e:
|
|
|
128 |
yield (
|
129 |
"🤖 El servidor no se encuentra disponible.",
|
130 |
"❌❌❌ Inténtalo de nuevo más tarde ❌❌❌",
|
@@ -136,7 +172,6 @@ def generate_text(
|
|
136 |
"Error",
|
137 |
)
|
138 |
|
139 |
-
temp = temp.outputs()[-1]
|
140 |
cache_handler.add_to_cache(
|
141 |
url=url, title=title, text=text, summary_type=mode, summary=temp
|
142 |
)
|
@@ -200,7 +235,7 @@ Para obtener solo la respuesta al clickbait, selecciona 100""",
|
|
200 |
placeholder="Aquí aparecerá el resumen de la noticia.",
|
201 |
),
|
202 |
],
|
203 |
-
#title="⚔️ Clickbait Fighter! ⚔️",
|
204 |
thumbnail="https://huggingface.co/spaces/Iker/ClickbaitFighter/resolve/main/logo2.png",
|
205 |
theme="JohnSmith9982/small_and_pretty",
|
206 |
description="""
|
@@ -220,11 +255,10 @@ Para obtener solo la respuesta al clickbait, selecciona 100""",
|
|
220 |
🧪 El modelo se encuentra en fase de desarrollo, si quieres ayudar a mejorarlo puedes usar los botones 👍 y 👎 para valorar el resumen. ¡Gracias por tu ayuda!""",
|
221 |
article="Esta Inteligencia Artificial ha sido generada por Iker García-Ferrero. Puedes saber más sobre mi trabajo en mi [página web](https://ikergarcia1996.github.io/Iker-Garcia-Ferrero/) o mi perfil de [X](https://twitter.com/iker_garciaf). Puedes ponerte en contacto conmigo a través de correo electrónico (ver web) y X.",
|
222 |
cache_examples=False,
|
223 |
-
concurrency_limit=1,
|
224 |
allow_flagging="manual",
|
225 |
flagging_options=[("👍", "correct"), ("👎", "incorrect")],
|
226 |
flagging_callback=hf_writer,
|
227 |
)
|
228 |
|
229 |
-
demo.queue(max_size=None)
|
230 |
demo.launch(share=False)
|
|
|
1 |
import os
|
2 |
+
import requests
|
3 |
import gradio as gr
|
4 |
from download_url import download_text_and_title
|
5 |
from cache_system import CacheHandler
|
|
|
6 |
from collections import OrderedDict
|
7 |
+
from typing import Any, Iterable, List
|
8 |
import datetime
|
9 |
+
import json
|
10 |
|
11 |
+
server = os.environ.get("SERVER") or "http://localhost:7861/generate"
|
|
|
12 |
auth_token = os.environ.get("TOKEN") or True
|
13 |
+
API_KEY = os.environ.get("API_KEY") or None
|
14 |
|
|
|
15 |
|
16 |
total_runs = 0
|
17 |
|
18 |
|
19 |
+
def call_vllm_server(tittle, body, mode, stream=True):
|
20 |
+
api_url = "http://localhost:7861/generate"
|
21 |
+
headers = {"User-Agent": "Test Client"}
|
22 |
+
|
23 |
+
json = {
|
24 |
+
"n": 1,
|
25 |
+
"tittle": tittle,
|
26 |
+
"body": body,
|
27 |
+
"mode": mode,
|
28 |
+
"max_tokens": 4096,
|
29 |
+
"temperature": 0.15,
|
30 |
+
"top_p": 0.1,
|
31 |
+
"top_k": 40,
|
32 |
+
"repetition_penalty": 1.1,
|
33 |
+
"stop": [
|
34 |
+
"<s>",
|
35 |
+
"</s>",
|
36 |
+
"\n",
|
37 |
+
"[/INST]",
|
38 |
+
"[INST]",
|
39 |
+
"### User:",
|
40 |
+
"### Assistant:",
|
41 |
+
"###",
|
42 |
+
],
|
43 |
+
"stream": stream,
|
44 |
+
"api_key": API_KEY,
|
45 |
+
}
|
46 |
+
response = requests.post(api_url, headers=headers, json=json)
|
47 |
+
return response
|
48 |
+
|
49 |
+
|
50 |
+
def get_streaming_response(response: requests.Response) -> Iterable[List[str]]:
|
51 |
+
for chunk in response.iter_lines(
|
52 |
+
chunk_size=8192, decode_unicode=False, delimiter=b"\0"
|
53 |
+
):
|
54 |
+
if chunk:
|
55 |
+
data = json.loads(chunk.decode("utf-8"))
|
56 |
+
output = data["text"]
|
57 |
+
yield output
|
58 |
+
|
59 |
+
|
60 |
class HuggingFaceDatasetSaver_custom(gr.HuggingFaceDatasetSaver):
|
61 |
def _deserialize_components(
|
62 |
self,
|
|
|
128 |
try:
|
129 |
title, text, url = download_text_and_title(url)
|
130 |
except Exception as e:
|
131 |
+
print(e)
|
132 |
title = None
|
133 |
text = None
|
134 |
|
|
|
154 |
progress(0.5, desc="🤖 Leyendo noticia")
|
155 |
|
156 |
try:
|
157 |
+
response = call_vllm_server(title, text, mode, stream=True)
|
158 |
+
for h in get_streaming_response(response):
|
159 |
+
temp = h[0]
|
160 |
+
yield title, temp, text
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
except Exception as e:
|
163 |
+
print(e)
|
164 |
yield (
|
165 |
"🤖 El servidor no se encuentra disponible.",
|
166 |
"❌❌❌ Inténtalo de nuevo más tarde ❌❌❌",
|
|
|
172 |
"Error",
|
173 |
)
|
174 |
|
|
|
175 |
cache_handler.add_to_cache(
|
176 |
url=url, title=title, text=text, summary_type=mode, summary=temp
|
177 |
)
|
|
|
235 |
placeholder="Aquí aparecerá el resumen de la noticia.",
|
236 |
),
|
237 |
],
|
238 |
+
# title="⚔️ Clickbait Fighter! ⚔️",
|
239 |
thumbnail="https://huggingface.co/spaces/Iker/ClickbaitFighter/resolve/main/logo2.png",
|
240 |
theme="JohnSmith9982/small_and_pretty",
|
241 |
description="""
|
|
|
255 |
🧪 El modelo se encuentra en fase de desarrollo, si quieres ayudar a mejorarlo puedes usar los botones 👍 y 👎 para valorar el resumen. ¡Gracias por tu ayuda!""",
|
256 |
article="Esta Inteligencia Artificial ha sido generada por Iker García-Ferrero. Puedes saber más sobre mi trabajo en mi [página web](https://ikergarcia1996.github.io/Iker-Garcia-Ferrero/) o mi perfil de [X](https://twitter.com/iker_garciaf). Puedes ponerte en contacto conmigo a través de correo electrónico (ver web) y X.",
|
257 |
cache_examples=False,
|
|
|
258 |
allow_flagging="manual",
|
259 |
flagging_options=[("👍", "correct"), ("👎", "incorrect")],
|
260 |
flagging_callback=hf_writer,
|
261 |
)
|
262 |
|
263 |
+
demo.queue(max_size=None, concurrency_count=100)
|
264 |
demo.launch(share=False)
|