|
from transformers import GPT2LMHeadModel, GPT2Tokenizer |
|
import streamlit as st |
|
import torch |
|
|
|
|
|
tokenizer = GPT2Tokenizer.from_pretrained('sberbank-ai/rugpt3small_based_on_gpt2') |
|
model = GPT2LMHeadModel.from_pretrained( |
|
'sberbank-ai/rugpt3small_based_on_gpt2', |
|
output_attentions = False, |
|
output_hidden_states = False, |
|
) |
|
|
|
model.load_state_dict(torch.load('modelgpt.pt', map_location=torch.device('cpu'))) |
|
|
|
|
|
|
|
|
|
prompt = st.text_input('Введите текст prompt:') |
|
length = st.slider('Длина генерируемой последовательности:', 10, 1000, 15) |
|
num_samples = st.slider('Число генераций:', 1, 10, 1) |
|
temperature = st.slider('Температура:', 1.0, 10.0, 2.0) |
|
|
|
|
|
|
|
|
|
def generate_text(model, tokenizer, prompt, length, num_samples, temperature): |
|
input_ids = tokenizer.encode(prompt, return_tensors='pt') |
|
output_sequences = model.generate( |
|
input_ids=input_ids, |
|
max_length=length, |
|
num_return_sequences=num_samples, |
|
temperature=temperature |
|
) |
|
|
|
generated_texts = [] |
|
for output_sequence in output_sequences: |
|
generated_text = tokenizer.decode(output_sequence, clean_up_tokenization_spaces=True) |
|
generated_texts.append(generated_text) |
|
|
|
return generated_texts |
|
|
|
|
|
if st.button('Сгенерировать текст'): |
|
generated_texts = generate_text(model, tokenizer, prompt, length, num_samples, temperature) |
|
for i, text in enumerate(generated_texts): |
|
st.write(f'Текст {i+1}:') |
|
st.write(text) |