|
from transformers import GPT2LMHeadModel, GPT2Tokenizer |
|
import streamlit as st |
|
import torch |
|
import textwrap |
|
import plotly.express as px |
|
|
|
|
|
st.header(':green[Text generation by GPT2 model]') |
|
|
|
tokenizer = GPT2Tokenizer.from_pretrained('sberbank-ai/rugpt3small_based_on_gpt2') |
|
model = GPT2LMHeadModel.from_pretrained( |
|
'sberbank-ai/rugpt3small_based_on_gpt2', |
|
output_attentions = False, |
|
output_hidden_states = False, |
|
) |
|
|
|
model.load_state_dict(torch.load('models/modelgpt.pt', map_location=torch.device('cpu'))) |
|
|
|
|
|
length = st.sidebar.slider('**Generated sequence length:**', 8, 256, 15) |
|
if length > 100: |
|
st.warning("This is very hard for me, please have pity on me. Could you lower the value?", icon="🤖") |
|
num_samples = st.sidebar.slider('**Number of generations:**', 1, 10, 1) |
|
if num_samples > 4: |
|
st.warning("OH MY ..., I have to work late again!!! Could you lower the value", icon="🤖") |
|
temperature = st.sidebar.slider('**Temperature:**', 0.1, 10.0, 3.0) |
|
if temperature > 6.0: |
|
st.info('What? You want to get some kind of bullshit as a result? Turn down the temperature', icon="🤖") |
|
top_k = st.sidebar.slider('**Number of most likely generation words:**', 10, 200, 50) |
|
top_p = st.sidebar.slider('**Minimum total probability of top words:**', 0.4, 1.0, 0.9) |
|
|
|
|
|
prompt = st.text_input('**Enter text 👇:**') |
|
if st.button('**Generate text**'): |
|
|
|
with torch.inference_mode(): |
|
prompt = tokenizer.encode(prompt, return_tensors='pt') |
|
out = model.generate( |
|
input_ids=prompt, |
|
max_length=length, |
|
num_beams=8, |
|
do_sample=True, |
|
temperature=temperature, |
|
top_k=top_k, |
|
top_p=top_p, |
|
no_repeat_ngram_size=3, |
|
num_return_sequences=num_samples, |
|
).cpu().numpy() |
|
st.write('**_Результат_** 👇') |
|
for i, out_ in enumerate(out): |
|
|
|
with st.expander(f'Текст {i+1}:'): |
|
st.write(textwrap.fill(tokenizer.decode(out_), 100)) |
|
st.image("pict/wow.png") |
|
|
|
|
|
|