Update gpt.py
Browse files
gpt.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
2 |
import streamlit as st
|
3 |
import torch
|
4 |
-
|
5 |
|
6 |
tokenizer = GPT2Tokenizer.from_pretrained('sberbank-ai/rugpt3small_based_on_gpt2')
|
7 |
model = GPT2LMHeadModel.from_pretrained(
|
@@ -16,32 +16,52 @@ model.load_state_dict(torch.load('modelgpt.pt', map_location=torch.device('cpu')
|
|
16 |
|
17 |
|
18 |
prompt = st.text_input('Введите текст prompt:')
|
19 |
-
length = st.slider('Длина генерируемой последовательности:',
|
20 |
num_samples = st.slider('Число генераций:', 1, 10, 1)
|
21 |
temperature = st.slider('Температура:', 1.0, 10.0, 2.0)
|
|
|
|
|
22 |
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
input_ids = tokenizer.encode(prompt, return_tensors='pt')
|
28 |
-
output_sequences = model.generate(
|
29 |
-
input_ids=input_ids,
|
30 |
-
max_length=length,
|
31 |
-
num_return_sequences=num_samples,
|
32 |
-
temperature=temperature
|
33 |
-
)
|
34 |
-
|
35 |
-
generated_texts = []
|
36 |
-
for output_sequence in output_sequences:
|
37 |
-
generated_text = tokenizer.decode(output_sequence, clean_up_tokenization_spaces=True)
|
38 |
-
generated_texts.append(generated_text)
|
39 |
-
|
40 |
-
return generated_texts
|
41 |
|
42 |
|
43 |
if st.button('Сгенерировать текст'):
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
st.write(f'Текст {i+1}:')
|
47 |
-
st.write(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
2 |
import streamlit as st
|
3 |
import torch
|
4 |
+
import textwrap
|
5 |
|
6 |
tokenizer = GPT2Tokenizer.from_pretrained('sberbank-ai/rugpt3small_based_on_gpt2')
|
7 |
model = GPT2LMHeadModel.from_pretrained(
|
|
|
16 |
|
17 |
|
18 |
prompt = st.text_input('Введите текст prompt:')
|
19 |
+
length = st.slider('Длина генерируемой последовательности:', 8, 256, 15)
|
20 |
num_samples = st.slider('Число генераций:', 1, 10, 1)
|
21 |
temperature = st.slider('Температура:', 1.0, 10.0, 2.0)
|
22 |
+
top_k = st.slider('Количество наиболее вероятных слов генерации:', 10, 200, 50)
|
23 |
+
top_k = st.slider('Минимальная суммарная вероятность топовых слов:', 0.4, 1.0, 0.9)
|
24 |
|
25 |
|
26 |
+
# def generate_text(model, tokenizer, prompt, length, num_samples, temperature):
|
27 |
+
# input_ids = tokenizer.encode(prompt, return_tensors='pt')
|
28 |
+
# output_sequences = model.generate(
|
29 |
+
# input_ids=input_ids,
|
30 |
+
# max_length=length,
|
31 |
+
# num_return_sequences=num_samples,
|
32 |
+
# temperature=temperature
|
33 |
+
# )
|
34 |
|
35 |
+
# generated_texts = []
|
36 |
+
# for output_sequence in output_sequences:
|
37 |
+
# generated_text = tokenizer.decode(output_sequence, clean_up_tokenization_spaces=True)
|
38 |
+
# generated_texts.append(generated_text)
|
39 |
|
40 |
+
# return generated_texts
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
|
43 |
if st.button('Сгенерировать текст'):
|
44 |
+
|
45 |
+
with torch.inference_mode():
|
46 |
+
prompt = tokenizer.encode(prompt, return_tensors='pt').to(device)
|
47 |
+
out = model.generate(
|
48 |
+
input_ids=prompt,
|
49 |
+
max_length=length,
|
50 |
+
num_beams=num_samples,
|
51 |
+
do_sample=True,
|
52 |
+
temperature=temperature,
|
53 |
+
top_k=top_k,
|
54 |
+
top_p=top_p,
|
55 |
+
no_repeat_ngram_size=3,
|
56 |
+
num_return_sequences=3,
|
57 |
+
).cpu().numpy()
|
58 |
+
for i, out_ in enumerate(out):
|
59 |
st.write(f'Текст {i+1}:')
|
60 |
+
st.write(textwrap.fill(tokenizer.decode(out_), 100))
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
# generated_texts = generate_text(model, tokenizer, prompt, length, num_samples, temperature)
|
65 |
+
# for i, text in enumerate(generated_texts):
|
66 |
+
# st.write(f'Текст {i+1}:')
|
67 |
+
# st.write(text)
|