File size: 6,127 Bytes
ee412eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import streamlit as st
import os

def show():
    st.markdown('<div class="main-header">โ„น๏ธ About This Project</div>', unsafe_allow_html=True)
    
    # ACVSS Hackathon Information
    st.markdown("## ACVSS 2025 Summer School Hackathon Project")
    
    st.info(
        "This project was developed by **Team SATOR** as part of the **ACVSS 2025 - The 4th Summer School on Advanced Computer Vision** hackathon. "
        "Our goal was to build a functional prototype for surgical scene understanding in a limited time frame."
    )
    
    # ACVSS Description
    st.markdown("""
    ### About ACVSS
    
    The **African Computer Vision Summer School (ACVSS)** is an intensive program designed to advance computer vision research and applications across Africa. The summer school brings together researchers, students, and industry professionals to explore cutting-edge technologies in computer vision, machine learning, and artificial intelligence.
    
    **Learn more**: [acvss.ai](https://www.acvss.ai/) | **Year**: 2025 | **Edition**: 4th Summer School
    """)

    st.markdown("---")

    # Team Section
    st.markdown("## ๐Ÿ‘ฅ Meet Team SATOR")
    
    # Add team description
    st.markdown("""
    **Team SATOR** is a diverse group of professionals brought together for the ACVSS 2025 hackathon. 
    Our team combines expertise in AI/ML, software engineering, data science, and quality assurance to deliver 
    innovative solutions in surgical scene understanding.
    """)
    
    st.markdown("### Team Members")
    
    # Team Member Profiles
    team_members = [
        {
            "name": "MEM1",
            "role": "Team Lead & System Architect",
            "desc": "Led the project, designed the overall system architecture, and ensured seamless integration of all components. Her vision guided the project's success.",
            "email": "[email protected]",
            "linkedin": "https://www.linkedin.com/in/evelyn-reed-acvss",
            "github": "https://github.com/evelyn-reed",
            "img": "https://i.pravatar.cc/150?img=1"
        },
        {
            "name": "MEM2",
            "role": "AI/ML Specialist",
            "desc": "Focused on developing and training the core SwinUnet and scene understanding models. Responsible for the AI-powered analysis and insights.",
            "email": "[email protected]",
            "linkedin": "https://www.linkedin.com/in/kenji-tanaka-ml",
            "github": "https://github.com/kenji-tanaka",
            "img": "https://i.pravatar.cc/150?img=2"
        },
        {
            "name": "MEM3",
            "role": "UI/UX & Frontend Developer",
            "desc": "Designed and built the Streamlit dashboard, focusing on creating an intuitive and informative user interface for surgeons and researchers.",
            "email": "[email protected]",
            "linkedin": "https://www.linkedin.com/in/sofia-rossi-ui",
            "github": "https://github.com/sofia-rossi",
            "img": "https://i.pravatar.cc/150?img=3"
        },
        {
            "name": "MEM4",
            "role": "Data Engineer",
            "desc": "Managed the data pipeline, from processing the MM-OR dataset to ensuring the models received clean, well-structured data for training and testing.",
            "email": "[email protected]",
            "linkedin": "https://www.linkedin.com/in/david-chen-data",
            "github": "https://github.com/david-chen",
            "img": "https://i.pravatar.cc/150?img=4"
        },
        {
            "name": "MEM5",
            "role": "QA & Testing Lead",
            "desc": "Oversaw the testing and validation of the entire pipeline, ensuring the system was robust, accurate, and met the project's objectives.",
            "email": "[email protected]",
            "linkedin": "https://www.linkedin.com/in/aisha-bello-qa",
            "github": "https://github.com/aisha-bello",
            "img": "https://i.pravatar.cc/150?img=5"
        }
    ]

    # Display team members in columns
    # Display team members in a responsive grid
    cols = st.columns(5)
    for i, member in enumerate(team_members):
        with cols[i]:
            st.markdown(f"##### {member['name']}")
            st.image(member['img'], width=120)
            st.markdown(f"**{member['role']}**")
            st.caption(member['desc'])
            st.markdown(f"โœ‰๏ธ [{member['email']}](mailto:{member['email']})")
            st.markdown(f"๐Ÿ’ผ [LinkedIn]({member['linkedin']})")
            st.markdown(f"๐Ÿ’ป [GitHub]({member['github']})")

    st.markdown("---")
    
    # Project Overview Section
    st.markdown("## ๐ŸŽฏ Project Overview")
    
    col1, col2 = st.columns(2)
    
    with col1:
        st.markdown("""
        ### ๐Ÿฅ Video Surgical Scene Understanding
        
        Our project focuses on developing an advanced computer vision system capable of:
        
        - **Scene Analysis**: Understanding surgical environments
        - **Tool Recognition**: Identifying medical instruments
        - **Workflow Tracking**: Monitoring surgical procedures
        - **Real-time Processing**: Immediate analysis and feedback
        """)
    
    with col2:
        st.markdown("""
        ### ๐Ÿ› ๏ธ Technical Stack
        
        - **Frontend**: Streamlit Dashboard
        - **Backend**: Python
        - **ML Models**: SwinUnet, Scene Graphs
        - **Dataset**: MM-OR (Multimodal Operating Room)
        - **Version**: v1.0 (July 2025)
        """)
    
    st.markdown("---")
    
    # Hackathon Achievement Section
    st.markdown("## ๐Ÿ† Hackathon Achievement")
    
    achievement_col1, achievement_col2, achievement_col3 = st.columns(3)
    
    with achievement_col1:
        st.metric("Pipeline Version", "v1.0", "Completed")
    
    with achievement_col2:
        st.metric("Models Integrated", "2/2", "โœ… Working")
    
    with achievement_col3:
        st.metric("Development Time", "Hackathon", "July 2025")
    
    st.markdown("---")
    
    st.markdown("ยฉ 2025 Team SATOR - ACVSS Hackathon. All Rights Reserved.")