import streamlit as st import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go def show(): st.markdown('
📁 Dataset: MM-OR
', unsafe_allow_html=True) st.markdown("---") st.markdown("## 🗂️ MM-OR: A Large-scale Multimodal Operating Room Dataset") st.markdown(""" This project utilizes the **MM-OR** dataset, a comprehensive collection of data recorded in a realistic operating room environment. It is designed to support research in surgical workflow analysis, human activity recognition, and context-aware systems in healthcare. """) # Dataset overview st.markdown("### 📊 Dataset High-Level Statistics") col1, col2, col3, col4 = st.columns(4) with col1: st.metric( label="📹 Surgical Procedures", value="10", ) with col2: st.metric( label="⏱️ Total Duration", value=">100 hours", ) with col3: st.metric( label="🏷️ Modalities", value="3 (Video, Audio, Depth)", ) with col4: st.metric( label="📂 Total Size", value="~12 TB", ) st.markdown("---") # Dataset categories st.markdown("### 🏥 Dataset Details") st.info("The MM-OR dataset is the primary source of data for training and evaluating the models in this system.") col1, col2 = st.columns(2) with col1: st.markdown("#### Key Features") st.markdown(""" - **Multimodal Data**: Includes synchronized video, multi-channel audio, and depth information. - **Multiple Views**: Video captured from multiple camera perspectives to provide a comprehensive view of the operating room. - **Rich Annotations**: Detailed annotations of: - Surgical roles (e.g., primary surgeon, assistant, nurse). - Atomic actions and complex activities. - Interactions between team members. - **Realistic Environment**: Data was collected in a high-fidelity simulated operating room. """) with col2: st.markdown("#### Data Modalities") st.image("https://www.researchgate.net/publication/359174963/figure/fig1/AS:1143128108556288@1649553881835/An-overview-of-our-data-acquisition-system-in-the-operating-room-OR-We-record.jpg", caption="Overview of the data acquisition system in the operating room.") st.markdown("---") st.markdown("### 📈 Data Distribution") # Create sample data for visualization procedure_data = { 'Surgical Procedure': [f'Procedure {i+1}' for i in range(10)], 'Duration (hours)': np.random.uniform(8, 12, 10).round(1), 'Number of Annotations': np.random.randint(1500, 3000, 10) } df_procedures = pd.DataFrame(procedure_data) fig = px.bar(df_procedures, x='Surgical Procedure', y='Duration (hours)', title='Duration per Surgical Procedure', labels={'Duration (hours)': 'Duration (hours)'}, color='Surgical Procedure') st.plotly_chart(fig, use_container_width=True) st.markdown("For more information, please refer to the original publication: *MM-OR: A Large-scale Multimodal Operating Room Dataset for Human Activity Recognition*.") st.markdown("The dataset is available on GitHub: [MM-OR Dataset](https://github.com/egeozsoy/MM-OR)")