Spaces:
Sleeping
Sleeping
import streamlit as st | |
from PIL import Image | |
import pytesseract | |
from transformers import RagRetriever, RagTokenForGeneration, RagTokenizer | |
from datasets import load_dataset | |
# --- App Title --- | |
st.set_page_config(page_title="Landmark Mapper", layout="wide") | |
st.title("πΊοΈ Landmark Mapper - Discover, Describe & Contribute") | |
# --- Image Upload --- | |
uploaded_file = st.file_uploader("Upload a landmark image", type=["jpg", "jpeg", "png"]) | |
# --- OCR + Description Input --- | |
description = "" | |
if uploaded_file: | |
image = Image.open(uploaded_file) | |
st.image(image, caption="Uploaded Image", use_column_width=True) | |
if st.checkbox("Run OCR to extract text from image"): | |
with st.spinner("Extracting text..."): | |
ocr_text = pytesseract.image_to_string(image) | |
st.text_area("Extracted Text", ocr_text, height=100) | |
description = st.text_area("Enter a description in your local language", height=150) | |
# --- RAG Integration --- | |
if st.button("Analyze with AI") and description: | |
with st.spinner("Running RAG model..."): | |
# Load RAG model components | |
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-base") | |
model = RagTokenForGeneration.from_pretrained("facebook/rag-token-base") | |
retriever = RagRetriever.from_pretrained("facebook/rag-token-base", index_name="legacy") | |
# Encode and retrieve | |
input_dict = tokenizer.prepare_seq2seq_batch(description, return_tensors="pt") | |
input_dict["input_ids"] = input_dict["input_ids"][:, :128] # limit input length | |
input_dict["retrieval_kwargs"] = {"n_docs": 5} | |
generated = model.generate( | |
input_ids=input_dict["input_ids"], | |
context_input_ids=None, | |
context_attention_mask=None, | |
num_beams=2, | |
min_length=30, | |
max_length=128 | |
) | |
output = tokenizer.batch_decode(generated, skip_special_tokens=True) | |
st.subheader("π AI-Enhanced Landmark Info") | |
st.write(output[0]) | |
# --- Corpus Contribution --- | |
if description: | |
st.success("β Thank you! Your description is now part of the landmark language corpus.") | |
st.markdown("Help us map Indian culture, one landmark at a time.") | |