Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +63 -0
- requirements.txt +4 -3
app.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import easyocr
|
| 4 |
+
import os
|
| 5 |
+
import datetime
|
| 6 |
+
|
| 7 |
+
# Initialize OCR reader
|
| 8 |
+
reader = easyocr.Reader(['en', 'hi', 'te', 'ta', 'bn', 'ml', 'gu', 'mr'], gpu=False)
|
| 9 |
+
|
| 10 |
+
# Create a directory to save uploads
|
| 11 |
+
UPLOAD_DIR = "uploaded_data"
|
| 12 |
+
os.makedirs(UPLOAD_DIR, exist_ok=True)
|
| 13 |
+
|
| 14 |
+
st.set_page_config(page_title="Indian Landmark Mapper", layout="centered")
|
| 15 |
+
|
| 16 |
+
st.title("📍 Indian Landmark Mapper")
|
| 17 |
+
st.write("Help preserve India's heritage. Upload a local landmark photo and describe it in your native language.")
|
| 18 |
+
|
| 19 |
+
# File uploader
|
| 20 |
+
image_file = st.file_uploader("Upload a photo of the landmark", type=['jpg', 'jpeg', 'png'])
|
| 21 |
+
|
| 22 |
+
# Text input
|
| 23 |
+
description = st.text_area("Write a short description in your local language")
|
| 24 |
+
|
| 25 |
+
# Optional: OCR toggle
|
| 26 |
+
run_ocr = st.checkbox("Run OCR on uploaded image (optional)")
|
| 27 |
+
|
| 28 |
+
# Optional: Location
|
| 29 |
+
location = st.text_input("Enter location (optional: village, town, district)")
|
| 30 |
+
|
| 31 |
+
# Submission button
|
| 32 |
+
if st.button("Submit"):
|
| 33 |
+
if image_file is None or not description.strip():
|
| 34 |
+
st.warning("Please upload an image and enter a description.")
|
| 35 |
+
else:
|
| 36 |
+
# Save image
|
| 37 |
+
timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
|
| 38 |
+
image_path = os.path.join(UPLOAD_DIR, f"{timestamp}_{image_file.name}")
|
| 39 |
+
with open(image_path, "wb") as f:
|
| 40 |
+
f.write(image_file.getbuffer())
|
| 41 |
+
|
| 42 |
+
# Save metadata
|
| 43 |
+
metadata = {
|
| 44 |
+
"description": description.strip(),
|
| 45 |
+
"location": location,
|
| 46 |
+
"image_filename": image_path,
|
| 47 |
+
"timestamp": timestamp
|
| 48 |
+
}
|
| 49 |
+
|
| 50 |
+
# In real deployment, replace this with saving to Hugging Face dataset or DB
|
| 51 |
+
st.success("✅ Submission received! Thank you for preserving your local heritage.")
|
| 52 |
+
st.json(metadata)
|
| 53 |
+
|
| 54 |
+
# OCR Section
|
| 55 |
+
if image_file and run_ocr:
|
| 56 |
+
st.subheader("🧠 OCR Result")
|
| 57 |
+
img = Image.open(image_file)
|
| 58 |
+
st.image(img, caption="Uploaded Image", use_column_width=True)
|
| 59 |
+
|
| 60 |
+
with st.spinner("Running OCR..."):
|
| 61 |
+
result = reader.readtext(np.array(img))
|
| 62 |
+
extracted_text = "\n".join([line[1] for line in result])
|
| 63 |
+
st.code(extracted_text)
|
requirements.txt
CHANGED
|
@@ -1,3 +1,4 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
easyocr
|
| 3 |
+
Pillow
|
| 4 |
+
numpy
|