Med_bot / app.py
Imsachinsingh00's picture
initial commit
b3d97d5
raw
history blame
1.17 kB
import gradio as gr
import torch
from transformers import BertTokenizer, EncoderDecoderModel, pipeline
# Load model and tokenizer
model = EncoderDecoderModel.from_pretrained("imsachinsingh00/bert2bert-mts-summary")
tokenizer = BertTokenizer.from_pretrained("imsachinsingh00/bert2bert-mts-summary")
# Move to CUDA if available
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
# Summarization function
def summarize_dialogue(dialogue):
inputs = tokenizer(dialogue, return_tensors="pt", padding=True, truncation=True, max_length=512).to(device)
summary_ids = model.generate(inputs.input_ids, max_length=64, num_beams=4, early_stopping=True)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
return summary
# Gradio interface
demo = gr.Interface(
fn=summarize_dialogue,
inputs=[
gr.Textbox(lines=10, label="Doctor-Patient Dialogue"),
gr.Audio(source="microphone", type="filepath", optional=True)
],
outputs="text",
title="Medical Dialogue Summarizer",
description="Enter or speak a conversation. The model will summarize it."
)
if __name__ == "__main__":
demo.launch()