Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import BertTokenizer, EncoderDecoderModel, pipeline | |
# Load model and tokenizer | |
model = EncoderDecoderModel.from_pretrained("imsachinsingh00/bert2bert-mts-summary") | |
tokenizer = BertTokenizer.from_pretrained("imsachinsingh00/bert2bert-mts-summary") | |
# Move to CUDA if available | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
# Summarization function | |
def summarize_dialogue(dialogue): | |
inputs = tokenizer(dialogue, return_tensors="pt", padding=True, truncation=True, max_length=512).to(device) | |
summary_ids = model.generate(inputs.input_ids, max_length=64, num_beams=4, early_stopping=True) | |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
return summary | |
# Gradio interface | |
demo = gr.Interface( | |
fn=summarize_dialogue, | |
inputs=[ | |
gr.Textbox(lines=10, label="Doctor-Patient Dialogue"), | |
gr.Audio(source="microphone", type="filepath", optional=True) | |
], | |
outputs="text", | |
title="Medical Dialogue Summarizer", | |
description="Enter or speak a conversation. The model will summarize it." | |
) | |
if __name__ == "__main__": | |
demo.launch() | |