nyarunyarunya commited on
Commit
4f7b5ea
·
verified ·
1 Parent(s): 59817b3

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitignore +19 -0
  2. OSS/OSS.py +357 -0
  3. OSS/__init__.py +0 -0
  4. OSS/model_wrap.py +124 -0
  5. OSS/utils.py +22 -0
  6. app.py +306 -0
  7. app_os.py +90 -0
  8. generate-pi-i2v-myinfer-oss-stu.py +452 -0
  9. generate-pi-i2v-myinfer-oss-tea.py +453 -0
  10. generate-pi-i2v.py +418 -0
  11. get-med.py +25 -0
  12. note-webui.txt +10 -0
  13. preprocess/extract-clip.py +57 -0
  14. preprocess/extract-t5.py +46 -0
  15. preprocess/extract-vae1.py +62 -0
  16. preprocess/extract-vae_all.py +64 -0
  17. pyproject.toml +41 -0
  18. req-fastvideo.txt +59 -0
  19. requirements.txt +15 -0
  20. scripts/distill/distill_cog.sh +40 -0
  21. scripts/distill/distill_cog720-49.sh +40 -0
  22. scripts/distill/distill_cog720-49mix246adv.sh +40 -0
  23. scripts/distill/distill_cog720-49mix26.sh +42 -0
  24. scripts/distill/distill_cog720-49mix26b.sh +42 -0
  25. scripts/distill/distill_hunyuan.sh +40 -0
  26. scripts/distill/distill_mochi.sh +38 -0
  27. scripts/finetune/finetune_wan.sh +39 -0
  28. scripts/huggingface/download_hf.py +39 -0
  29. scripts/huggingface/upload_hf.py +9 -0
  30. scripts/inference/inference_diffusers_hunyuan.sh +20 -0
  31. scripts/inference/inference_hunyuan.sh +19 -0
  32. scripts/inference/inference_mochi_sp.sh +19 -0
  33. scripts/preprocess/preprocess_cog_data.sh +35 -0
  34. scripts/preprocess/preprocess_hunyuan_data.sh +33 -0
  35. scripts/preprocess/preprocess_mochi_data.sh +33 -0
  36. wan/__init__.py +3 -0
  37. wan/configs/__init__.py +44 -0
  38. wan/configs/shared_config.py +19 -0
  39. wan/configs/wan_i2v_14B.py +35 -0
  40. wan/configs/wan_t2v_14B.py +29 -0
  41. wan/configs/wan_t2v_1_3B.py +29 -0
  42. wan/distributed/__init__.py +0 -0
  43. wan/distributed/fsdp.py +32 -0
  44. wan/distributed/xdit_context_parallel.py +192 -0
  45. wan/image2video.py +345 -0
  46. wan/image2video_if_oss.py +380 -0
  47. wan/image2video_mdinfer_oss_stu.py +454 -0
  48. wan/image2video_mdinfer_oss_tea.py +513 -0
  49. wan/modules/__init__.py +16 -0
  50. wan/modules/attention.py +208 -0
.gitignore ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *output*
2
+ *__pycache__*
3
+ *samples*
4
+ *runs*
5
+ *checkpoints*
6
+ master_ip
7
+ *logs*
8
+ *.DS_Store
9
+ .idea
10
+ .ipynb_checkpoints
11
+ *ckpts*
12
+ *kernel_meta*
13
+ *egg*
14
+ *wandb*
15
+ output_root*
16
+ fastvideo
17
+ outputs*
18
+ wandb*
19
+ *test_data*
OSS/OSS.py ADDED
@@ -0,0 +1,357 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+ import logging
4
+
5
+
6
+ from .utils import _broadcast_tensor
7
+
8
+ def cal_medium(oss_steps_all):
9
+ ave_steps = []
10
+ for k in range(len(oss_steps_all[0])):
11
+ l = []
12
+ for i in range(len(oss_steps_all)):
13
+ l.append(oss_steps_all[i][k])
14
+ l.sort()
15
+ ave_steps.append((l[len(l)//2] + l[len(l)//2 - 1])//2)
16
+ return ave_steps
17
+
18
+
19
+
20
+
21
+ @torch.no_grad()
22
+ def infer_OSS(oss_steps, model, z, class_emb, device, renorm_flag=False, max_amp=None, min_amp=None, float32=True, model_kwargs=None):
23
+ # z [B,C.H,W]
24
+
25
+ N = len(oss_steps)
26
+ B = z.shape[0]
27
+ oss_steps = [0] + oss_steps
28
+ ori_z = z.clone()
29
+
30
+ # First is zero
31
+ timesteps = model.fm_steps
32
+
33
+ if model_kwargs is None:
34
+ model_kwargs = {}
35
+
36
+ for i in reversed(range(1,N+1)):
37
+ logging.info(f"steps {i}")
38
+ t = torch.ones((B,), device=device, dtype=torch.long) * oss_steps[i]
39
+
40
+ if renorm_flag:
41
+
42
+ max_s = torch.quantile(z.reshape((z.shape[0], -1)), 0.95, dim=1)
43
+ min_s = torch.quantile(z.reshape((z.shape[0], -1)), 0.05, dim=1)
44
+
45
+
46
+ max_amp_tmp = max_amp[oss_steps[i]-1]
47
+ min_amp_tmp = min_amp[oss_steps[i]-1]
48
+
49
+ ak = (max_amp_tmp - min_amp_tmp)/(max_s - min_s)
50
+ ab = min_amp_tmp - ak*min_s
51
+
52
+ z = _broadcast_tensor(ak, z.shape) *z + _broadcast_tensor(ab, z.shape)
53
+
54
+ vt = model(z, t, class_emb, model_kwargs)
55
+ if float32:
56
+ z = z.to(torch.float32)
57
+ z = z + (timesteps[oss_steps[i-1]] - timesteps[oss_steps[i]]) * vt
58
+ if float32:
59
+ z = z.to(ori_z.dtype)
60
+
61
+ return z
62
+
63
+ @torch.no_grad()
64
+ def search_OSS_video(model, z, batch_size, class_emb, device, teacher_steps=200, student_steps=5, norm=2, model_kwargs=None, frame_type="6", channel_type="4", random_channel=False, float32=True):
65
+ # z [B,C.H,W]
66
+ # model_kwargs doesn't contain class_embedding, which is another seperate input
67
+ # the class_embedding is the same for all the searching samples here.
68
+
69
+ B = batch_size
70
+ N = teacher_steps
71
+ STEP = student_steps
72
+ assert z.shape[0] == B
73
+ channel_size = z.shape[1]
74
+ frame_size = z.shape[2]
75
+
76
+
77
+ # First is zero
78
+ timesteps = model.fm_steps
79
+
80
+
81
+ if model_kwargs is None:
82
+ model_kwargs = {}
83
+
84
+ # Compute the teacher trajectory
85
+ traj_tea = torch.stack([torch.ones_like(z)]*(N+1), dim = 0)
86
+ traj_tea[N] = z
87
+ z_tea = z.clone()
88
+
89
+ for i in reversed(range(1,N+1)):
90
+ print("teachering,%s"%i)
91
+
92
+ t = torch.ones((B,), device=device, dtype=torch.long) * i
93
+ vt = model(z_tea, t, class_emb, model_kwargs)
94
+ if float32:
95
+ z_tea = z_tea.to(torch.float32)
96
+ z_tea = z_tea + vt * (timesteps[i-1] - timesteps[i])
97
+ if float32:
98
+ z_tea = z_tea.to(z.dtype)
99
+
100
+
101
+ traj_tea[i-1] = z_tea.clone()
102
+
103
+
104
+ # solving dynamic programming
105
+ all_steps = []
106
+
107
+
108
+ for i_batch in range(B): # process each image separately
109
+ z_cur = z[i_batch].clone().unsqueeze(0)
110
+ if class_emb is not None:
111
+ class_emb_cur = class_emb[i_batch].clone().unsqueeze(0)
112
+ else:
113
+ class_emb_cur = None
114
+
115
+ tracestep = [torch.ones(N+1, device=device, dtype=torch.long)*N for _ in range(STEP+1)]
116
+ dp = torch.ones((STEP+1,N+1), device=device)*torch.inf
117
+ z_prev = torch.cat([z_cur]*(N+1),dim=0)
118
+ z_next = z_prev.clone()
119
+
120
+ for k in range(STEP):
121
+ print("studenting,%s" % k)
122
+ logging.info(f"Doing k step solving {k}")
123
+
124
+ if random_channel and channel_type != "all":
125
+ channel_select = np.random.choice(range(channel_size), size=int(channel_type), replace=False)
126
+
127
+ for i in reversed(range(1,N+1)):
128
+ z_i = z_prev[i].unsqueeze(0)
129
+ t = torch.ones((1,), device=device, dtype=torch.long) * i
130
+ vt = model(z_i, t, class_emb_cur, model_kwargs)
131
+
132
+ for j in reversed(range(0,i)):
133
+ if float32:
134
+ z_i = z_i.to(torch.float32)
135
+ z_nxt = z_i + vt * (timesteps[j] - timesteps[i])
136
+ if float32:
137
+ z_nxt = z_nxt.to(z.dtype)
138
+
139
+
140
+ if random_channel:
141
+ pass
142
+ elif channel_type == "all":
143
+ channel_select = list(range(channel_size))
144
+ else:
145
+ channel_select = list(range(int(channel_type)))
146
+
147
+ if frame_type == "all":
148
+ frame_select = list(range(frame_size))
149
+ else:
150
+ frame_select = torch.linspace(0,frame_size-1,int(frame_type),dtype=torch.long).tolist()
151
+
152
+
153
+
154
+ channel_select_tensor = torch.tensor(channel_select, dtype=torch.long, device=device)
155
+ frame_select_tensor = torch.tensor(frame_select, dtype=torch.long, device=device)
156
+
157
+ z_nxt_select = z_nxt[0, channel_select_tensor,...]
158
+ traj_tea_select = traj_tea[j, i_batch, channel_select_tensor, ...]
159
+
160
+ z_nxt_select = z_nxt_select[:,frame_select_tensor,... ]
161
+ traj_tea_select = traj_tea_select[:,frame_select_tensor,... ]
162
+
163
+
164
+ cost = (torch.abs(z_nxt_select - traj_tea_select))**norm
165
+ cost = cost.mean()
166
+
167
+ if cost < dp[k][j]:
168
+ dp[k][j] = cost
169
+ tracestep[k][j] = i
170
+ z_next[j] = z_nxt
171
+
172
+ dp[k+1] = dp[k].clone()
173
+ tracestep[k+1] = tracestep[k].clone()
174
+ z_prev = z_next.clone()
175
+
176
+
177
+ logging.info(f"finish {k} steps")
178
+
179
+ cur_step = [0]
180
+ for kk in reversed(range(k+1)):
181
+ j = cur_step[-1]
182
+ cur_step.append(int(tracestep[kk][j].item()))
183
+
184
+ logging.info(cur_step)
185
+
186
+
187
+ # trace back
188
+ final_step = [0]
189
+ for k in reversed(range(STEP)):
190
+ j = final_step[-1]
191
+ final_step.append(int(tracestep[k][j].item()))
192
+ logging.info(final_step)
193
+ all_steps.append(final_step[1:])
194
+
195
+ return all_steps[0]
196
+
197
+
198
+
199
+ @torch.no_grad()
200
+ def search_OSS(model, z, batch_size, class_emb, device, teacher_steps=200, student_steps=5, model_kwargs=None):
201
+ # z [B,C.H,W]
202
+ # model_kwargs doesn't contain class_embedding, which is another seperate input
203
+ # the class_embedding is the same for all the searching samples here.
204
+
205
+ B = batch_size
206
+ N = teacher_steps
207
+ STEP = student_steps
208
+ assert z.shape[0] == B
209
+
210
+ # First is zero
211
+ timesteps = model.fm_steps
212
+
213
+
214
+ if model_kwargs is None:
215
+ model_kwargs = {}
216
+
217
+ # Compute the teacher trajectory
218
+ traj_tea = torch.stack([torch.ones_like(z)]*(N+1), dim = 0)
219
+ traj_tea[N] = z
220
+ z_tea = z.clone()
221
+
222
+ for i in reversed(range(1,N+1)):
223
+
224
+ t = torch.ones((B,), device=device, dtype=torch.long) * i
225
+ vt = model(z_tea, t, class_emb, model_kwargs)
226
+ z_tea = z_tea + vt * (timesteps[i-1] - timesteps[i])
227
+ traj_tea[i-1] = z_tea.clone()
228
+
229
+ # solving dynamic programming
230
+ all_steps = []
231
+
232
+ for i_batch in range(B): # process each image separately
233
+ z_cur = z[i_batch].clone().unsqueeze(0)
234
+ if class_emb is not None:
235
+ class_emb_cur = class_emb[i_batch].clone().unsqueeze(0)
236
+ else:
237
+ class_emb_cur = None
238
+ tracestep = [torch.ones(N+1, device=device, dtype=torch.long)*N for _ in range(STEP+1)]
239
+ dp = torch.ones((STEP+1,N+1), device=device)*torch.inf
240
+ z_prev = torch.cat([z_cur]*(N+1),dim=0)
241
+ z_next = z_prev.clone()
242
+
243
+
244
+ for k in range(STEP):
245
+ logging.info(f"Doing k step solving {k}")
246
+ for i in reversed(range(1,N+1)):
247
+ z_i = z_prev[i].unsqueeze(0)
248
+ t = torch.ones((1,), device=device, dtype=torch.long) * i
249
+ vt = model(z_i, t, class_emb_cur, model_kwargs)
250
+
251
+ for j in reversed(range(0,i)):
252
+ z_j = z_i + vt * (timesteps[j] - timesteps[i])
253
+ cost = (z_j - traj_tea[j, i_batch])**2
254
+ cost = cost.mean()
255
+
256
+ if cost < dp[k][j]:
257
+ dp[k][j] = cost
258
+ tracestep[k][j] = i
259
+ z_next[j] = z_j
260
+
261
+ dp[k+1] = dp[k].clone()
262
+ tracestep[k+1] = tracestep[k].clone()
263
+ z_prev = z_next.clone()
264
+
265
+ # trace back
266
+ final_step = [0]
267
+ for k in reversed(range(STEP)):
268
+ j = final_step[-1]
269
+ final_step.append(int(tracestep[k][j].item()))
270
+ logging.info(final_step)
271
+ all_steps.append(final_step[1:])
272
+
273
+ return all_steps
274
+
275
+
276
+
277
+
278
+ @torch.no_grad()
279
+ def search_OSS_batch(model, z, batch_size, class_emb, device, teacher_steps=200, student_steps=5, model_kwargs=None):
280
+ # z [B,C.H,W]
281
+ # model_kwargs doesn't contain class_embedding, which is another seperate input
282
+ # the class_embedding is the same for all the searching samples here.
283
+
284
+ B = batch_size
285
+ N = teacher_steps
286
+ STEP = student_steps
287
+
288
+
289
+ # First is zero
290
+ timesteps = model.fm_steps
291
+
292
+ if model_kwargs is None:
293
+ model_kwargs = {}
294
+
295
+ # Compute the teacher trajectory
296
+ traj_tea = torch.stack([torch.ones_like(z)]*(N+1), dim = 0)
297
+ traj_tea[N] = z
298
+ z_tea = z.clone()
299
+
300
+ for i in reversed(range(1,N+1)):
301
+ t = torch.ones((B,), device=device, dtype=torch.long) * i
302
+ vt = model(z_tea, t, class_emb, model_kwargs)
303
+ z_tea = z_tea + (timesteps[i-1] - timesteps[i]) * vt
304
+ traj_tea[i-1] = z_tea.clone()
305
+
306
+
307
+
308
+ times = torch.linspace(0,N,N+1, device=device).long()
309
+ t_in = torch.linspace(1, N, N, device=device).long()
310
+ # solving dynamic programming
311
+ all_steps = []
312
+
313
+ for i_batch in range(B): # process each image separately
314
+ z_cur = z[i_batch].clone().unsqueeze(0)
315
+ if class_emb is not None:
316
+ class_emb_cur = class_emb[i_batch].clone().unsqueeze(0).expand(N)
317
+ else:
318
+ class_emb_cur = None
319
+ tracestep = [torch.ones(N+1, device=device, dtype=torch.long)*N for _ in range(STEP+1)]
320
+ dp = torch.ones((STEP+1,N+1), device=device)*torch.inf
321
+ z_prev = torch.cat([z_cur]*(N+1),dim=0)
322
+ z_next = z_prev.clone()
323
+
324
+
325
+ for k in range(STEP):
326
+ logging.info(f"Doing k step solving {k}")
327
+ vt = model(z_prev[1:], t_in, class_emb_cur, model_kwargs)
328
+
329
+ for i in reversed(range(1,N+1)):
330
+ t = torch.ones((i,), device=device, dtype=torch.long) * i
331
+ z_i_batch = torch.stack([z_prev[i]]*i ,dim=0)
332
+ dt = timesteps[times[:i]] - timesteps[t]
333
+ z_j_batch = z_i_batch[:i] + _broadcast_tensor(dt, z_i_batch.shape) * vt[i-1].unsqueeze(0)
334
+
335
+ cost = (z_j_batch - traj_tea[:i,i_batch,...])**2
336
+ cost = cost.mean(dim = tuple(range(1, len(cost.shape))))
337
+ mask = cost < dp[k, :i]
338
+
339
+ dp[k, :i] = torch.where(mask, cost, dp[k, :i])
340
+ tracestep[k][:i] = torch.where(mask, i, tracestep[k][:i])
341
+ expanded_mask = _broadcast_tensor(mask,z_i_batch.shape)
342
+ z_next[:i] = torch.where(expanded_mask, z_j_batch, z_next[:i])
343
+
344
+
345
+ dp[k+1] = dp[k].clone()
346
+ tracestep[k+1] = tracestep[k].clone()
347
+ z_prev = z_next.clone()
348
+
349
+ # trace back
350
+ final_step = [0]
351
+ for k in reversed(range(STEP)):
352
+ j = final_step[-1]
353
+ final_step.append(int(tracestep[k][j].item()))
354
+ logging.info(final_step)
355
+ all_steps.append(final_step[1:])
356
+
357
+ return all_steps
OSS/__init__.py ADDED
File without changes
OSS/model_wrap.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pdb
2
+
3
+ import torch
4
+ import numpy as np
5
+ from .utils import _broadcast_tensor, _extract_into_tensor
6
+
7
+
8
+
9
+ class _WrappedModel_DiT:
10
+ def __init__(self, model, diffusion, device=None, class_emb_null=None):
11
+ self.model = model
12
+ self.diffusion = diffusion
13
+ self._predict_xstart_from_eps = diffusion._predict_xstart_from_eps
14
+
15
+ self.diffusion_t_map = list(diffusion.use_timesteps)
16
+ self.diffusion_t_map.sort()
17
+
18
+ self.diffusion_t = [self.diffusion_t_map[i] for i in range(diffusion.num_timesteps)] # list(range(diffusion.num_timesteps))
19
+ self.diffusion_t = np.array(self.diffusion_t)
20
+
21
+ self.diffusion_sqrt_alpha_cumprod = np.array([diffusion.sqrt_alphas_cumprod[i] for i in range(diffusion.num_timesteps)])
22
+ self.fm_steps = [(1 - self.diffusion_sqrt_alpha_cumprod[i]**2)**0.5/(self.diffusion_sqrt_alpha_cumprod[i] + (1 - self.diffusion_sqrt_alpha_cumprod[i]**2)**0.5) for i in range(len(self.diffusion_t))]
23
+
24
+ self.fm_steps = torch.tensor([0] + self.fm_steps, device=device)
25
+ self.y_null = class_emb_null
26
+
27
+
28
+
29
+
30
+
31
+ def __call__(self, x, t, y, kwargs):
32
+
33
+ N = len(self.diffusion_t)
34
+ B,C,H,W = x.shape
35
+ diffusion_x = torch.zeros_like(x)
36
+ diffusion_t = _extract_into_tensor(self.diffusion_t, t-1, t.shape).long()
37
+
38
+
39
+ t_fm = self.fm_steps[t]
40
+ diffusion_x_tmp = _extract_into_tensor(self.diffusion.sqrt_alphas_cumprod, t-1, x.shape) * x / ( 1 + 1e-4 - _broadcast_tensor(t_fm,x.shape))
41
+ diffusion_x_tmp = diffusion_x_tmp.to(torch.float)
42
+ diffusion_x = torch.where(_broadcast_tensor(t,x.shape) == N, x, diffusion_x_tmp)
43
+
44
+
45
+ y_null_batch = torch.cat([self.y_null[0].unsqueeze(0)]*B, dim=0)
46
+ y_new = torch.cat([y, y_null_batch], 0)
47
+
48
+
49
+ model_output = self.model(torch.cat([diffusion_x,diffusion_x],dim=0), torch.cat([diffusion_t,diffusion_t],dim=0), y_new, **kwargs)
50
+ model_output = model_output[:B]
51
+ model_output, _ = torch.split(model_output, C, dim=1)
52
+ x0_diffusion = self._predict_xstart_from_eps(x_t=diffusion_x, t=t-1, eps=model_output)
53
+ vt = (x - x0_diffusion) / (_broadcast_tensor(t_fm,x.shape))
54
+ vt = vt.to(diffusion_x.dtype)
55
+ return vt
56
+
57
+
58
+
59
+ class _WrappedModel_Sora:
60
+ def __init__(self, model, guidance_scale, y_null, timesteps, num_timesteps, mask_t):
61
+ self.model = model
62
+ self.guidance_scale = guidance_scale
63
+ self.y_null = y_null
64
+
65
+ self.timesteps = [torch.tensor([0], device=model.device)] + timesteps[::-1]
66
+ self.timesteps = torch.cat(self.timesteps, dim=0)
67
+ self.fm_steps = [x/num_timesteps for x in self.timesteps]
68
+ self.mask_t = mask_t
69
+
70
+ def __call__(self, x, t, y, kwargs):
71
+ y = torch.cat([y, self.y_null], dim=0)
72
+
73
+ t_in = self.timesteps[t]
74
+
75
+ x_in = torch.cat([x,x], dim=0)
76
+ # breakpoint()
77
+ mask_t_upper = self.mask_t >= t_in.unsqueeze(1)
78
+ kwargs["x_mask"] = mask_t_upper.repeat(2, 1)
79
+
80
+ t_in = torch.cat([t_in,t_in], dim=0)
81
+ with torch.no_grad():
82
+ pred = self.model(x_in, t_in, y, **kwargs).chunk(2, dim=1)[0]
83
+ # breakpoint()
84
+ pred_cond, pred_uncond = pred.chunk(2, dim=0)
85
+ v_pred = pred_uncond + self.guidance_scale * (pred_cond - pred_uncond)
86
+
87
+ return -v_pred
88
+
89
+
90
+
91
+ class _WrappedModel_Wan:
92
+ def __init__(self, model, timesteps, num_timesteps, context_null, guide_scale):
93
+ self.model = model
94
+ self.context_null = context_null
95
+ self.guide_scale = guide_scale
96
+ fm_steps = torch.cat([timesteps,torch.zeros_like(timesteps[0]).view(1)])
97
+ self.time_steps = torch.flip(fm_steps, dims=[0])
98
+ self.fm_steps = self.time_steps/num_timesteps
99
+
100
+
101
+ def __call__(self, x, t, y, kwargs):
102
+ self.time_steps = self.time_steps.to(t.device)
103
+ t = self.time_steps[t]
104
+ noise_pred_cond = self.model(x, t=t, context=y, **kwargs)[0]
105
+ noise_pred_uncond = self.model(x, t=t, context=self.context_null, **kwargs)[0]
106
+ noise_pred = noise_pred_uncond + self.guide_scale * (noise_pred_cond - noise_pred_uncond)
107
+ return noise_pred
108
+
109
+
110
+
111
+
112
+ class _WrappedModel_FLUX:
113
+ def __init__(self, model, timesteps, num_timesteps):
114
+ self.model = model
115
+ fm_steps = torch.cat([timesteps,torch.zeros_like(timesteps[0]).view(1)])
116
+ self.time_steps = torch.flip(fm_steps, dims=[0])
117
+ self.fm_steps = self.time_steps/num_timesteps
118
+
119
+
120
+ def __call__(self, x, t, y, kwargs):
121
+ t = self.time_steps[t]
122
+ t = t.expand(x.shape[0]).to(x.dtype) / 1000
123
+ pred = self.model(hidden_states=x, timestep=t, **kwargs)[0]
124
+ return pred
OSS/utils.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import torch
3
+
4
+
5
+ def _broadcast_tensor(a, broadcast_shape):
6
+ while len(a.shape) < len(broadcast_shape):
7
+ a = a[..., None]
8
+ return a.expand(broadcast_shape)
9
+
10
+ def _extract_into_tensor(arr, timesteps, broadcast_shape):
11
+ """
12
+ Extract values from a 1-D numpy array for a batch of indices.
13
+ :param arr: the 1-D numpy array.
14
+ :param timesteps: a tensor of indices into the array to extract.
15
+ :param broadcast_shape: a larger shape of K dimensions with the batch
16
+ dimension equal to the length of timesteps.
17
+ :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
18
+ """
19
+ res = torch.from_numpy(arr).to(device=timesteps.device)[timesteps].float()
20
+ while len(res.shape) < len(broadcast_shape):
21
+ res = res[..., None]
22
+ return res + torch.zeros(broadcast_shape, device=timesteps.device)
app.py ADDED
@@ -0,0 +1,306 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ '''
3
+ 可以自选帧数、
4
+ 49 3s
5
+ 57 3.5s
6
+ 65 4s
7
+ 73 4.5s
8
+ 81 5s
9
+ 加速模式
10
+ 40/tea40/10(暂时不支持)
11
+
12
+ image2video_teacache1是支持是否传tea参并且能传秒数的版本
13
+ '''
14
+ # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved
15
+ import logging,os
16
+ os.makedirs("/root/weights",exist_ok=True)
17
+ cmd="huggingface-cli download IndexTeam/AnisoraV3 --include=\"14B/*\" --local-dir=/root/weights --token %s"%os.environ['token']
18
+ os.system(cmd)
19
+
20
+ # os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
21
+ from time import time as ttime
22
+ import argparse
23
+ from datetime import datetime
24
+ import logging
25
+ import sys
26
+ import warnings
27
+ from fastapi import FastAPI
28
+ import uvicorn
29
+ import gradio as gr
30
+ warnings.filterwarnings('ignore')
31
+
32
+ import torch, random
33
+ import torch.distributed as dist
34
+ from PIL import Image
35
+
36
+ import wan
37
+ from wan.image2video_if_oss import WanI2V
38
+ from wan.configs import WAN_CONFIGS, SIZE_CONFIGS, MAX_AREA_CONFIGS, SUPPORTED_SIZES
39
+ from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander
40
+ from wan.utils.utils import cache_video, cache_image, str2bool
41
+
42
+ value2speed={
43
+ "原版":0,
44
+ "加速版":1,
45
+ }
46
+ EXAMPLE_PROMPT = {
47
+ "t2v-1.3B": {
48
+ "prompt": "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
49
+ },
50
+ "t2v-14B": {
51
+ "prompt": "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
52
+ },
53
+ "t2i-14B": {
54
+ "prompt": "一个朴素端庄的美人",
55
+ },
56
+ "i2v-14B": {
57
+ "prompt":
58
+ "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside.",
59
+ "image":
60
+ "examples/i2v_input.JPG",
61
+ },
62
+ }
63
+
64
+
65
+ def _validate_args(args):
66
+ # Basic check
67
+ assert args.ckpt_dir is not None, "Please specify the checkpoint directory."
68
+ assert args.task in WAN_CONFIGS, f"Unsupport task: {args.task}"
69
+ assert args.task in EXAMPLE_PROMPT, f"Unsupport task: {args.task}"
70
+
71
+ # The default sampling steps are 40 for image-to-video tasks and 50 for text-to-video tasks.
72
+ if args.sample_steps is None:
73
+ args.sample_steps = 40 if "i2v" in args.task else 50
74
+
75
+ if args.sample_shift is None:
76
+ args.sample_shift = 5.0
77
+ if "i2v" in args.task and args.size in ["832*480", "480*832"]:
78
+ args.sample_shift = 3.0
79
+
80
+ # The default number of frames are 1 for text-to-image tasks and 81 for other tasks.
81
+ if args.frame_num is None:
82
+ args.frame_num = 1 if "t2i" in args.task else 81
83
+
84
+ # T2I frame_num check
85
+ if "t2i" in args.task:
86
+ assert args.frame_num == 1, f"Unsupport frame_num {args.frame_num} for task {args.task}"
87
+
88
+ args.base_seed = args.base_seed if args.base_seed >= 0 else random.randint(
89
+ 0, sys.maxsize)
90
+ # Size check
91
+ assert args.size in SUPPORTED_SIZES[
92
+ args.
93
+ task], f"Unsupport size {args.size} for task {args.task}, supported sizes are: {', '.join(SUPPORTED_SIZES[args.task])}"
94
+
95
+
96
+ def _parse_args():
97
+ parser = argparse.ArgumentParser(
98
+ description="Generate a image or video from a text prompt or image using Wan"
99
+ )
100
+ parser.add_argument(
101
+ "--task",
102
+ type=str,
103
+ default="t2v-14B",
104
+ choices=list(WAN_CONFIGS.keys()),
105
+ help="The task to run.")
106
+ parser.add_argument(
107
+ "--size",
108
+ type=str,
109
+ default="1280*720",
110
+ choices=list(SIZE_CONFIGS.keys()),
111
+ help="The area (width*height) of the generated video. For the I2V task, the aspect ratio of the output video will follow that of the input image."
112
+ )
113
+ parser.add_argument(
114
+ "--frame_num",
115
+ type=int,
116
+ default=None,
117
+ help="How many frames to sample from a image or video. The number should be 4n+1"
118
+ )
119
+ parser.add_argument(
120
+ "--ckpt_dir",
121
+ type=str,
122
+ default=None,
123
+ help="The path to the checkpoint directory.")
124
+ parser.add_argument(
125
+ "--offload_model",
126
+ type=str2bool,
127
+ default=None,
128
+ help="Whether to offload the model to CPU after each model forward, reducing GPU memory usage."
129
+ )
130
+ parser.add_argument(
131
+ "--ulysses_size",
132
+ type=int,
133
+ default=1,
134
+ help="The size of the ulysses parallelism in DiT.")
135
+ parser.add_argument(
136
+ "--ring_size",
137
+ type=int,
138
+ default=1,
139
+ help="The size of the ring attention parallelism in DiT.")
140
+ parser.add_argument(
141
+ "--t5_fsdp",
142
+ action="store_true",
143
+ default=False,
144
+ help="Whether to use FSDP for T5.")
145
+ parser.add_argument(
146
+ "--t5_cpu",
147
+ action="store_true",
148
+ default=False,
149
+ help="Whether to place T5 model on CPU.")
150
+ parser.add_argument(
151
+ "--dit_fsdp",
152
+ action="store_true",
153
+ default=False,
154
+ help="Whether to use FSDP for DiT.")
155
+ parser.add_argument(
156
+ "--save_file",
157
+ type=str,
158
+ default=None,
159
+ help="The file to save the generated image or video to.")
160
+ parser.add_argument(
161
+ "--prompt",
162
+ type=str,
163
+ default=None,
164
+ help="The prompt to generate the image or video from.")
165
+ parser.add_argument(
166
+ "--use_prompt_extend",
167
+ action="store_true",
168
+ default=False,
169
+ help="Whether to use prompt extend.")
170
+ parser.add_argument(
171
+ "--prompt_extend_method",
172
+ type=str,
173
+ default="local_qwen",
174
+ choices=["dashscope", "local_qwen"],
175
+ help="The prompt extend method to use.")
176
+ parser.add_argument(
177
+ "--prompt_extend_model",
178
+ type=str,
179
+ default=None,
180
+ help="The prompt extend model to use.")
181
+ parser.add_argument(
182
+ "--prompt_extend_target_lang",
183
+ type=str,
184
+ default="ch",
185
+ choices=["ch", "en"],
186
+ help="The target language of prompt extend.")
187
+ parser.add_argument(
188
+ "--base_seed",
189
+ type=int,
190
+ default=-1,
191
+ help="The seed to use for generating the image or video.")
192
+ parser.add_argument(
193
+ "--image",
194
+ type=str,
195
+ default=None,
196
+ help="The image to generate the video from.")
197
+ parser.add_argument(
198
+ "--sample_solver",
199
+ type=str,
200
+ default='unipc',
201
+ choices=['unipc', 'dpm++'],
202
+ help="The solver used to sample.")
203
+ parser.add_argument(
204
+ "--sample_steps", type=int, default=None, help="The sampling steps.")
205
+ parser.add_argument(
206
+ "--sample_shift",
207
+ type=float,
208
+ default=None,
209
+ help="Sampling shift factor for flow matching schedulers.")
210
+ parser.add_argument(
211
+ "--sample_guide_scale",
212
+ type=float,
213
+ default=5.0,
214
+ help="Classifier free guidance scale.")
215
+
216
+ args = parser.parse_args()
217
+
218
+ _validate_args(args)
219
+
220
+ return args
221
+
222
+
223
+ def _init_logging(rank):
224
+ # logging
225
+ if rank == 0:
226
+ # set format
227
+ logging.basicConfig(
228
+ level=logging.INFO,
229
+ format="[%(asctime)s] %(levelname)s: %(message)s",
230
+ handlers=[logging.StreamHandler(stream=sys.stdout)])
231
+ else:
232
+ logging.basicConfig(level=logging.ERROR)
233
+
234
+ def generate(args):
235
+ rank = int(os.getenv("RANK", 0))
236
+ world_size = int(os.getenv("WORLD_SIZE", 1))
237
+ local_rank = int(os.getenv("LOCAL_RANK", 0))
238
+ device = local_rank
239
+ _init_logging(rank)
240
+
241
+ if args.offload_model is None:
242
+ args.offload_model = False if world_size > 1 else True
243
+ logging.info(
244
+ f"offload_model is not specified, set to {args.offload_model}.")
245
+
246
+ cfg = WAN_CONFIGS[args.task]
247
+ if args.ulysses_size > 1:
248
+ assert cfg.num_heads % args.ulysses_size == 0, f"`num_heads` must be divisible by `ulysses_size`."
249
+
250
+ logging.info(f"Generation job args: {args}")
251
+ logging.info(f"Generation model config: {cfg}")
252
+
253
+ if dist.is_initialized():
254
+ base_seed = [args.base_seed] if rank == 0 else [None]
255
+ dist.broadcast_object_list(base_seed, src=0)
256
+ args.base_seed = base_seed[0]
257
+
258
+ logging.info("Creating WanI2V pipeline.")
259
+ # wan_i2v = wan.WanI2V(
260
+ wan_i2v = WanI2V(
261
+ config=cfg,
262
+ checkpoint_dir=args.ckpt_dir,
263
+ device_id=device,
264
+ rank=rank,
265
+ t5_fsdp=args.t5_fsdp,
266
+ dit_fsdp=args.dit_fsdp,
267
+ use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
268
+ t5_cpu=args.t5_cpu,
269
+ )
270
+
271
+ def generate_i2v(prompt,img,seed,nf,speed):
272
+ logging.info("Generating video ...")
273
+ save_file="output/%s-%s-%s-%s.mp4"%(seed,nf,speed,int(ttime()))
274
+ video = wan_i2v.generate(
275
+ prompt,
276
+ img,
277
+ max_area=MAX_AREA_CONFIGS[args.size],
278
+ frame_num=int(nf)*16+1,#args.frame_num
279
+ shift=args.sample_shift,
280
+ sample_solver=args.sample_solver,
281
+ sampling_steps=args.sample_steps,
282
+ guide_scale=args.sample_guide_scale,
283
+ seed=seed,#args.base_seed,
284
+ offload_model=args.offload_model,
285
+ speed=value2speed[speed]
286
+ )
287
+ if rank==0:
288
+ video_update = gr.update(visible=True, value=save_file)
289
+ seed_update = gr.update(visible=True, value=seed)
290
+ cache_video(
291
+ tensor=video[None],
292
+ save_file=save_file,
293
+ fps=cfg.sample_fps,
294
+ nrow=1,
295
+ normalize=True,
296
+ value_range=(-1, 1))
297
+ return save_file, video_update, seed_update
298
+ if rank == 0:
299
+ from app_os import DEMO
300
+ demo=DEMO(generate_i2v).demo
301
+ demo.launch()
302
+
303
+
304
+ if __name__ == "__main__":
305
+ args = _parse_args()
306
+ generate(args)
app_os.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """
3
+ THis is the main file for the gradio web demo. It uses the CogVideoX-5B model to generate videos gradio web demo.
4
+ set environment variable OPENAI_API_KEY to use the OpenAI API to enhance the prompt.
5
+
6
+ Usage:
7
+ OpenAI_API_KEY=your_openai_api_key OPENAI_BASE_URL=https://api.openai.com/v1 python inference/gradio_web_demo.py
8
+ """
9
+
10
+ import logging
11
+ import math
12
+ import os
13
+ import sys
14
+ from fastapi.responses import PlainTextResponse
15
+ from PIL import Image
16
+ from huggingface_hub.utils.tqdm import progress_bar_states
17
+ from numpy import ndarray
18
+
19
+ current_dir = os.path.abspath(os.path.dirname(__file__))
20
+ sys.path.append(os.path.join(current_dir, '../'))
21
+ import random
22
+ import threading
23
+ import time
24
+
25
+ import cv2
26
+ import tempfile
27
+ import imageio_ffmpeg
28
+ import gradio as gr
29
+
30
+ from datetime import datetime, timedelta
31
+
32
+ os.makedirs("./output", exist_ok=True)
33
+ os.makedirs("./input", exist_ok=True)
34
+ os.makedirs("./gradio_tmp", exist_ok=True)
35
+
36
+ class DEMO:
37
+ def __init__(self,generate):
38
+ with gr.Blocks() as self.demo:
39
+ gr.Markdown("""
40
+ <div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;">
41
+ AniSora-Bilibili动画视频生成模型
42
+ </div>
43
+ """)
44
+ with gr.Row():
45
+ with gr.Column():
46
+ with gr.Accordion("I2V: Image Input (cannot be used simultaneously with video input)", open=True):
47
+ image_input = gr.Image(label="Input Image")
48
+ prompt = gr.Textbox(label="Prompt (Less than 200 Words)", placeholder="Enter your prompt here", lines=5)
49
+ nf = gr.Slider(label="秒数", minimum=3,maximum=5, step=0.5, value=5)
50
+ speed = gr.Radio(label="加速模式",value='加速版',choices=['原版','加速版'])
51
+ with gr.Group():
52
+ with gr.Column():
53
+ with gr.Row():
54
+ seed_param = gr.Number(
55
+ label="Inference Seed (Enter a positive number, -1 for random)", value=233
56
+ )
57
+
58
+ generate_button = gr.Button("🎬 Generate Video")
59
+
60
+ with gr.Column():
61
+ video_output = gr.Video(label="Generated Video")
62
+ with gr.Row():
63
+ download_video_button = gr.File(label="📥 Download Video", visible=False)
64
+ seed_text = gr.Number(label="Seed Used for Video Generation", visible=False)
65
+
66
+ generate_button.click(
67
+ generate,
68
+ inputs=[prompt, image_input,seed_param,nf,speed],
69
+ outputs=[video_output, download_video_button, seed_text],
70
+ )
71
+
72
+
73
+ if __name__ == "__main__":
74
+ from fastapi import FastAPI
75
+ import uvicorn
76
+
77
+ app = FastAPI()
78
+
79
+
80
+ @app.get('/v2/health/ready')
81
+ def health():
82
+ return ""
83
+
84
+
85
+ demoo=DEMO()
86
+ demo=demoo.demo
87
+ demo.queue(max_size=15)
88
+ app = gr.mount_gradio_app(app,demo, path="/api/adhoc/ttv/demo")
89
+ uvicorn.run(app,host="0.0.0.0",port=26780)#
90
+ # demo.launch(server_name="0.0.0.0",server_port=16780)
generate-pi-i2v-myinfer-oss-stu.py ADDED
@@ -0,0 +1,452 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+
3
+ # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
4
+ import os
5
+ os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
6
+ import argparse
7
+ from datetime import datetime
8
+ import logging
9
+ import sys
10
+ import warnings
11
+
12
+ warnings.filterwarnings('ignore')
13
+
14
+ import torch, random
15
+ import torch.distributed as dist
16
+ from PIL import Image
17
+
18
+ import wan
19
+ from wan.image2video_mdinfer_oss_stu import WanI2V
20
+ from wan.text2video import WanT2V
21
+ from wan.configs import WAN_CONFIGS, SIZE_CONFIGS, MAX_AREA_CONFIGS, SUPPORTED_SIZES
22
+ from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander
23
+ from wan.utils.utils import cache_video, cache_image, str2bool
24
+
25
+ EXAMPLE_PROMPT = {
26
+ "t2v-1.3B": {
27
+ "prompt": "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
28
+ },
29
+ "t2v-14B": {
30
+ "prompt": "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
31
+ },
32
+ "t2i-14B": {
33
+ "prompt": "一个朴素端庄的美人",
34
+ },
35
+ "i2v-14B": {
36
+ "prompt":
37
+ "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside.",
38
+ "image":
39
+ "examples/i2v_input.JPG",
40
+ },
41
+ }
42
+
43
+
44
+ def _validate_args(args):
45
+ # Basic check
46
+ assert args.ckpt_dir is not None, "Please specify the checkpoint directory."
47
+ assert args.task in WAN_CONFIGS, f"Unsupport task: {args.task}"
48
+ assert args.task in EXAMPLE_PROMPT, f"Unsupport task: {args.task}"
49
+
50
+ # The default sampling steps are 40 for image-to-video tasks and 50 for text-to-video tasks.
51
+ if args.sample_steps is None:
52
+ args.sample_steps = 40 if "i2v" in args.task else 50
53
+
54
+ if args.sample_shift is None:
55
+ args.sample_shift = 5.0
56
+ if "i2v" in args.task and args.size in ["832*480", "480*832"]:
57
+ args.sample_shift = 3.0
58
+
59
+ # The default number of frames are 1 for text-to-image tasks and 81 for other tasks.
60
+ if args.frame_num is None:
61
+ args.frame_num = 1 if "t2i" in args.task else 81
62
+
63
+ # T2I frame_num check
64
+ if "t2i" in args.task:
65
+ assert args.frame_num == 1, f"Unsupport frame_num {args.frame_num} for task {args.task}"
66
+
67
+ args.base_seed = args.base_seed if args.base_seed >= 0 else random.randint(
68
+ 0, sys.maxsize)
69
+ # Size check
70
+ assert args.size in SUPPORTED_SIZES[
71
+ args.
72
+ task], f"Unsupport size {args.size} for task {args.task}, supported sizes are: {', '.join(SUPPORTED_SIZES[args.task])}"
73
+
74
+ args.sample_steps=96#64########todo
75
+
76
+ def _parse_args():
77
+ parser = argparse.ArgumentParser(
78
+ description="Generate a image or video from a text prompt or image using Wan"
79
+ )
80
+ parser.add_argument(
81
+ "--task",
82
+ type=str,
83
+ default="t2v-14B",
84
+ choices=list(WAN_CONFIGS.keys()),
85
+ help="The task to run.")
86
+ parser.add_argument(
87
+ "--size",
88
+ type=str,
89
+ default="1280*720",
90
+ choices=list(SIZE_CONFIGS.keys()),
91
+ help="The area (width*height) of the generated video. For the I2V task, the aspect ratio of the output video will follow that of the input image."
92
+ )
93
+ parser.add_argument(
94
+ "--frame_num",
95
+ type=int,
96
+ default=None,
97
+ help="How many frames to sample from a image or video. The number should be 4n+1"
98
+ )
99
+ parser.add_argument(
100
+ "--ckpt_dir",
101
+ type=str,
102
+ default=None,
103
+ help="The path to the checkpoint directory.")
104
+ parser.add_argument(
105
+ "--offload_model",
106
+ type=str2bool,
107
+ default=None,
108
+ help="Whether to offload the model to CPU after each model forward, reducing GPU memory usage."
109
+ )
110
+ parser.add_argument(
111
+ "--ulysses_size",
112
+ type=int,
113
+ default=1,
114
+ help="The size of the ulysses parallelism in DiT.")
115
+ parser.add_argument(
116
+ "--ring_size",
117
+ type=int,
118
+ default=1,
119
+ help="The size of the ring attention parallelism in DiT.")
120
+ parser.add_argument(
121
+ "--t5_fsdp",
122
+ action="store_true",
123
+ default=False,
124
+ help="Whether to use FSDP for T5.")
125
+ parser.add_argument(
126
+ "--t5_cpu",
127
+ action="store_true",
128
+ default=False,
129
+ help="Whether to place T5 model on CPU.")
130
+ parser.add_argument(
131
+ "--dit_fsdp",
132
+ action="store_true",
133
+ default=False,
134
+ help="Whether to use FSDP for DiT.")
135
+ parser.add_argument(
136
+ "--save_file",
137
+ type=str,
138
+ default=None,
139
+ help="The file to save the generated image or video to.")
140
+ parser.add_argument(
141
+ "--prompt",
142
+ type=str,
143
+ default=None,
144
+ help="The prompt to generate the image or video from.")
145
+ parser.add_argument(
146
+ "--use_prompt_extend",
147
+ action="store_true",
148
+ default=False,
149
+ help="Whether to use prompt extend.")
150
+ parser.add_argument(
151
+ "--student_steps",
152
+ type=int,
153
+ default=20,
154
+ help="The student steps during searching!")
155
+ parser.add_argument(
156
+ "--norm",
157
+ type=float,
158
+ default=2.0,
159
+ help="Norm of the cost function.")
160
+ parser.add_argument(
161
+ "--frame_type",
162
+ type=str,
163
+ default='all',
164
+ help="The cost frames of video.")
165
+ parser.add_argument(
166
+ "--channel_type",
167
+ type=str,
168
+ default="all",
169
+ choices=['2', '4', '8','12',"all"],
170
+ help="The cost channel of video.")
171
+ parser.add_argument(
172
+ "--prompt_extend_method",
173
+ type=str,
174
+ default="local_qwen",
175
+ choices=["dashscope", "local_qwen"],
176
+ help="The prompt extend method to use.")
177
+ parser.add_argument(
178
+ "--prompt_extend_model",
179
+ type=str,
180
+ default=None,
181
+ help="The prompt extend model to use.")
182
+ parser.add_argument(
183
+ "--prompt_extend_target_lang",
184
+ type=str,
185
+ default="ch",
186
+ choices=["ch", "en"],
187
+ help="The target language of prompt extend.")
188
+ parser.add_argument(
189
+ "--base_seed",
190
+ type=int,
191
+ default=-1,
192
+ help="The seed to use for generating the image or video.")
193
+ parser.add_argument(
194
+ "--image",
195
+ type=str,
196
+ default=None,
197
+ help="The image to generate the video from.")
198
+ parser.add_argument(
199
+ "--sample_solver",
200
+ type=str,
201
+ default='unipc',
202
+ choices=['unipc', 'dpm++'],
203
+ help="The solver used to sample.")
204
+ parser.add_argument(
205
+ "--sample_steps", type=int, default=None, help="The sampling steps.")
206
+ parser.add_argument(
207
+ "--sample_shift",
208
+ type=float,
209
+ default=None,
210
+ help="Sampling shift factor for flow matching schedulers.")
211
+ parser.add_argument(
212
+ "--sample_guide_scale",
213
+ type=float,
214
+ default=5.0,
215
+ help="Classifier free guidance scale.")
216
+
217
+ args = parser.parse_args()
218
+
219
+ _validate_args(args)
220
+
221
+ return args
222
+
223
+
224
+ def _init_logging(rank):
225
+ # logging
226
+ if rank == 0:
227
+ # set format
228
+ logging.basicConfig(
229
+ level=logging.INFO,
230
+ format="[%(asctime)s] %(levelname)s: %(message)s",
231
+ handlers=[logging.StreamHandler(stream=sys.stdout)])
232
+ else:
233
+ logging.basicConfig(level=logging.ERROR)
234
+
235
+
236
+ def generate(args):
237
+ rank = int(os.getenv("RANK", 0))
238
+ world_size = int(os.getenv("WORLD_SIZE", 1))
239
+ local_rank = int(os.getenv("LOCAL_RANK", 0))
240
+ device = local_rank
241
+ _init_logging(rank)
242
+
243
+ if args.offload_model is None:
244
+ args.offload_model = False if world_size > 1 else True
245
+ logging.info(
246
+ f"offload_model is not specified, set to {args.offload_model}.")
247
+ if world_size > 1:
248
+ torch.cuda.set_device(local_rank)
249
+ dist.init_process_group(
250
+ backend="nccl",
251
+ init_method="env://",
252
+ rank=rank,
253
+ world_size=world_size)
254
+ else:
255
+ assert not (
256
+ args.t5_fsdp or args.dit_fsdp
257
+ ), f"t5_fsdp and dit_fsdp are not supported in non-distributed environments."
258
+ assert not (
259
+ args.ulysses_size > 1 or args.ring_size > 1
260
+ ), f"context parallel are not supported in non-distributed environments."
261
+
262
+ if args.ulysses_size > 1 or args.ring_size > 1:
263
+ assert args.ulysses_size * args.ring_size == world_size, f"The number of ulysses_size and ring_size should be equal to the world size."
264
+ from xfuser.core.distributed import (initialize_model_parallel,
265
+ init_distributed_environment)
266
+ init_distributed_environment(
267
+ rank=dist.get_rank(), world_size=dist.get_world_size())
268
+
269
+ initialize_model_parallel(
270
+ sequence_parallel_degree=dist.get_world_size(),
271
+ ring_degree=args.ring_size,
272
+ ulysses_degree=args.ulysses_size,
273
+ )
274
+
275
+ if args.use_prompt_extend:
276
+ if args.prompt_extend_method == "dashscope":
277
+ prompt_expander = DashScopePromptExpander(
278
+ model_name=args.prompt_extend_model, is_vl="i2v" in args.task)
279
+ elif args.prompt_extend_method == "local_qwen":
280
+ prompt_expander = QwenPromptExpander(
281
+ model_name=args.prompt_extend_model,
282
+ is_vl="i2v" in args.task,
283
+ device=rank)
284
+ else:
285
+ raise NotImplementedError(
286
+ f"Unsupport prompt_extend_method: {args.prompt_extend_method}")
287
+
288
+ cfg = WAN_CONFIGS[args.task]
289
+ if args.ulysses_size > 1:
290
+ assert cfg.num_heads % args.ulysses_size == 0, f"`num_heads` must be divisible by `ulysses_size`."
291
+
292
+ logging.info(f"Generation job args: {args}")
293
+ logging.info(f"Generation model config: {cfg}")
294
+
295
+ if dist.is_initialized():
296
+ base_seed = [args.base_seed] if rank == 0 else [None]
297
+ dist.broadcast_object_list(base_seed, src=0)
298
+ args.base_seed = base_seed[0]
299
+
300
+ if "t2v" in args.task or "t2i" in args.task:
301
+ opt_dir=args.image
302
+ with open(args.prompt,"r")as f:
303
+ lines=f.read().strip("\n").split("\n")
304
+ # if args.prompt is None:
305
+ # args.prompt = EXAMPLE_PROMPT[args.task]["prompt"]
306
+
307
+ logging.info("Creating WanT2V pipeline.")
308
+ # wan_t2v = wan.WanT2V(
309
+ wan_t2v = WanT2V(
310
+ config=cfg,
311
+ checkpoint_dir=args.ckpt_dir,
312
+ device_id=device,
313
+ rank=rank,
314
+ t5_fsdp=args.t5_fsdp,
315
+ dit_fsdp=args.dit_fsdp,
316
+ use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
317
+ t5_cpu=args.t5_cpu,
318
+ )
319
+ for idx,line in enumerate(lines):
320
+ args.save_file="%s/%s.mp4"%(opt_dir,idx)
321
+ prompt,image=line.split("@@")
322
+ args.image=image
323
+ args.prompt=prompt
324
+ logging.info(f"Input prompt: {args.prompt}")
325
+ if args.use_prompt_extend:
326
+ logging.info("Extending prompt ...")
327
+ if rank == 0:
328
+ prompt_output = prompt_expander(
329
+ args.prompt,
330
+ tar_lang=args.prompt_extend_target_lang,
331
+ seed=args.base_seed)
332
+ if prompt_output.status == False:
333
+ logging.info(
334
+ f"Extending prompt failed: {prompt_output.message}")
335
+ logging.info("Falling back to original prompt.")
336
+ input_prompt = args.prompt
337
+ else:
338
+ input_prompt = prompt_output.prompt
339
+ input_prompt = [input_prompt]
340
+ else:
341
+ input_prompt = [None]
342
+ if dist.is_initialized():
343
+ dist.broadcast_object_list(input_prompt, src=0)
344
+ args.prompt = input_prompt[0]
345
+ logging.info(f"Extended prompt: {args.prompt}")
346
+
347
+ logging.info(
348
+ f"Generating {'image' if 't2i' in args.task else 'video'} ...")
349
+ video = wan_t2v.generate(
350
+ args.prompt,
351
+ size=SIZE_CONFIGS[args.size],
352
+ frame_num=args.frame_num,
353
+ shift=args.sample_shift,
354
+ sample_solver=args.sample_solver,
355
+ sampling_steps=args.sample_steps,
356
+ guide_scale=args.sample_guide_scale,
357
+ seed=args.base_seed,
358
+ offload_model=args.offload_model)
359
+ if rank==0:
360
+ cache_video(
361
+ tensor=video[None],
362
+ save_file=args.save_file,
363
+ fps=cfg.sample_fps,
364
+ nrow=1,
365
+ normalize=True,
366
+ value_range=(-1, 1))
367
+ else:
368
+ if args.prompt is None:
369
+ args.prompt = EXAMPLE_PROMPT[args.task]["prompt"]
370
+ if args.image is None:
371
+ args.image = EXAMPLE_PROMPT[args.task]["image"]
372
+ logging.info(f"Input prompt: {args.prompt}")
373
+ logging.info(f"Input image: {args.image}")
374
+
375
+ opt_dir=args.image
376
+ with open(args.prompt,"r",encoding="gbk")as f:
377
+ lines=f.read().strip("\n").split("\n")
378
+ logging.info("Creating WanI2V pipeline.")
379
+ # wan_i2v = wan.WanI2V(
380
+ wan_i2v = WanI2V(
381
+ config=cfg,
382
+ checkpoint_dir=args.ckpt_dir,
383
+ device_id=device,
384
+ rank=rank,
385
+ t5_fsdp=args.t5_fsdp,
386
+ dit_fsdp=args.dit_fsdp,
387
+ use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
388
+ t5_cpu=args.t5_cpu,
389
+ )
390
+
391
+ for idx,line in enumerate(lines):
392
+ args.save_file="%s/%s.mp4"%(opt_dir,idx)
393
+ prompt,image=line.split("@@")
394
+ args.image=image
395
+ args.prompt=prompt
396
+ img = Image.open(args.image).convert("RGB")
397
+ if args.use_prompt_extend:
398
+ logging.info("Extending prompt ...")
399
+ if rank == 0:
400
+ prompt_output = prompt_expander(
401
+ args.prompt,
402
+ tar_lang=args.prompt_extend_target_lang,
403
+ image=img,
404
+ seed=args.base_seed)
405
+ if prompt_output.status == False:
406
+ logging.info(
407
+ f"Extending prompt failed: {prompt_output.message}")
408
+ logging.info("Falling back to original prompt.")
409
+ input_prompt = args.prompt
410
+ else:
411
+ input_prompt = prompt_output.prompt
412
+ input_prompt = [input_prompt]
413
+ else:
414
+ input_prompt = [None]
415
+ if dist.is_initialized():
416
+ dist.broadcast_object_list(input_prompt, src=0)
417
+ args.prompt = input_prompt[0]
418
+ logging.info(f"Extended prompt: {args.prompt}")
419
+ logging.info("Generating video ...")
420
+ if os.path.exists(args.save_file)==False:
421
+ video = wan_i2v.generate(
422
+ args.prompt,
423
+ img,
424
+ max_area=MAX_AREA_CONFIGS[args.size],
425
+ frame_num=args.frame_num,
426
+ shift=args.sample_shift,
427
+ sample_solver=args.sample_solver,
428
+ sampling_steps=args.sample_steps,
429
+ guide_scale=args.sample_guide_scale,
430
+ seed=args.base_seed,
431
+ offload_model=args.offload_model,
432
+
433
+ student_steps=16,
434
+ norm=2,
435
+ frame_type="4",
436
+ channel_type="all",
437
+
438
+ )
439
+ if rank==0:
440
+ cache_video(
441
+ tensor=video[None],
442
+ save_file=args.save_file,
443
+ fps=cfg.sample_fps,
444
+ nrow=1,
445
+ normalize=True,
446
+ value_range=(-1, 1))
447
+ logging.info("Finished.")
448
+
449
+
450
+ if __name__ == "__main__":
451
+ args = _parse_args()
452
+ generate(args)
generate-pi-i2v-myinfer-oss-tea.py ADDED
@@ -0,0 +1,453 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+
3
+ # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
4
+ import os
5
+ os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
6
+ import argparse
7
+ from datetime import datetime
8
+ import logging
9
+ import sys
10
+ import warnings
11
+
12
+ warnings.filterwarnings('ignore')
13
+
14
+ import torch, random
15
+ import torch.distributed as dist
16
+ from PIL import Image
17
+
18
+ import wan
19
+ from wan.image2video_mdinfer_oss_tea import WanI2V
20
+ from wan.text2video import WanT2V
21
+ from wan.configs import WAN_CONFIGS, SIZE_CONFIGS, MAX_AREA_CONFIGS, SUPPORTED_SIZES
22
+ from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander
23
+ from wan.utils.utils import cache_video, cache_image, str2bool
24
+
25
+ EXAMPLE_PROMPT = {
26
+ "t2v-1.3B": {
27
+ "prompt": "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
28
+ },
29
+ "t2v-14B": {
30
+ "prompt": "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
31
+ },
32
+ "t2i-14B": {
33
+ "prompt": "一个朴素端庄的美人",
34
+ },
35
+ "i2v-14B": {
36
+ "prompt":
37
+ "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside.",
38
+ "image":
39
+ "examples/i2v_input.JPG",
40
+ },
41
+ }
42
+
43
+
44
+ def _validate_args(args):
45
+ # Basic check
46
+ assert args.ckpt_dir is not None, "Please specify the checkpoint directory."
47
+ assert args.task in WAN_CONFIGS, f"Unsupport task: {args.task}"
48
+ assert args.task in EXAMPLE_PROMPT, f"Unsupport task: {args.task}"
49
+
50
+ # The default sampling steps are 40 for image-to-video tasks and 50 for text-to-video tasks.
51
+ if args.sample_steps is None:
52
+ args.sample_steps = 40 if "i2v" in args.task else 50
53
+
54
+ if args.sample_shift is None:
55
+ args.sample_shift = 5.0
56
+ if "i2v" in args.task and args.size in ["832*480", "480*832"]:
57
+ args.sample_shift = 3.0
58
+
59
+ # The default number of frames are 1 for text-to-image tasks and 81 for other tasks.
60
+ if args.frame_num is None:
61
+ args.frame_num = 1 if "t2i" in args.task else 81
62
+
63
+ # T2I frame_num check
64
+ if "t2i" in args.task:
65
+ assert args.frame_num == 1, f"Unsupport frame_num {args.frame_num} for task {args.task}"
66
+
67
+ args.base_seed = args.base_seed if args.base_seed >= 0 else random.randint(
68
+ 0, sys.maxsize)
69
+ # Size check
70
+ assert args.size in SUPPORTED_SIZES[
71
+ args.
72
+ task], f"Unsupport size {args.size} for task {args.task}, supported sizes are: {', '.join(SUPPORTED_SIZES[args.task])}"
73
+
74
+
75
+ def _parse_args():
76
+ parser = argparse.ArgumentParser(
77
+ description="Generate a image or video from a text prompt or image using Wan"
78
+ )
79
+ parser.add_argument(
80
+ "--task",
81
+ type=str,
82
+ default="t2v-14B",
83
+ choices=list(WAN_CONFIGS.keys()),
84
+ help="The task to run.")
85
+ parser.add_argument(
86
+ "--size",
87
+ type=str,
88
+ default="1280*720",
89
+ choices=list(SIZE_CONFIGS.keys()),
90
+ help="The area (width*height) of the generated video. For the I2V task, the aspect ratio of the output video will follow that of the input image."
91
+ )
92
+ parser.add_argument(
93
+ "--frame_num",
94
+ type=int,
95
+ default=None,
96
+ help="How many frames to sample from a image or video. The number should be 4n+1"
97
+ )
98
+ parser.add_argument(
99
+ "--ckpt_dir",
100
+ type=str,
101
+ default=None,
102
+ help="The path to the checkpoint directory.")
103
+ parser.add_argument(
104
+ "--offload_model",
105
+ type=str2bool,
106
+ default=None,
107
+ help="Whether to offload the model to CPU after each model forward, reducing GPU memory usage."
108
+ )
109
+ parser.add_argument(
110
+ "--ulysses_size",
111
+ type=int,
112
+ default=1,
113
+ help="The size of the ulysses parallelism in DiT.")
114
+ parser.add_argument(
115
+ "--ring_size",
116
+ type=int,
117
+ default=1,
118
+ help="The size of the ring attention parallelism in DiT.")
119
+ parser.add_argument(
120
+ "--t5_fsdp",
121
+ action="store_true",
122
+ default=False,
123
+ help="Whether to use FSDP for T5.")
124
+ parser.add_argument(
125
+ "--t5_cpu",
126
+ action="store_true",
127
+ default=False,
128
+ help="Whether to place T5 model on CPU.")
129
+ parser.add_argument(
130
+ "--dit_fsdp",
131
+ action="store_true",
132
+ default=False,
133
+ help="Whether to use FSDP for DiT.")
134
+ parser.add_argument(
135
+ "--save_file",
136
+ type=str,
137
+ default=None,
138
+ help="The file to save the generated image or video to.")
139
+ parser.add_argument(
140
+ "--prompt",
141
+ type=str,
142
+ default=None,
143
+ help="The prompt to generate the image or video from.")
144
+ parser.add_argument(
145
+ "--use_prompt_extend",
146
+ action="store_true",
147
+ default=False,
148
+ help="Whether to use prompt extend.")
149
+ parser.add_argument(
150
+ "--student_steps",
151
+ type=int,
152
+ default=20,
153
+ help="The student steps during searching!")
154
+ parser.add_argument(
155
+ "--norm",
156
+ type=float,
157
+ default=2.0,
158
+ help="Norm of the cost function.")
159
+ parser.add_argument(
160
+ "--frame_type",
161
+ type=str,
162
+ default='all',
163
+ help="The cost frames of video.")
164
+ parser.add_argument(
165
+ "--channel_type",
166
+ type=str,
167
+ default="all",
168
+ choices=['2', '4', '8','12',"all"],
169
+ help="The cost channel of video.")
170
+ parser.add_argument(
171
+ "--prompt_extend_method",
172
+ type=str,
173
+ default="local_qwen",
174
+ choices=["dashscope", "local_qwen"],
175
+ help="The prompt extend method to use.")
176
+ parser.add_argument(
177
+ "--prompt_extend_model",
178
+ type=str,
179
+ default=None,
180
+ help="The prompt extend model to use.")
181
+ parser.add_argument(
182
+ "--prompt_extend_target_lang",
183
+ type=str,
184
+ default="ch",
185
+ choices=["ch", "en"],
186
+ help="The target language of prompt extend.")
187
+ parser.add_argument(
188
+ "--base_seed",
189
+ type=int,
190
+ default=-1,
191
+ help="The seed to use for generating the image or video.")
192
+ parser.add_argument(
193
+ "--image",
194
+ type=str,
195
+ default=None,
196
+ help="The image to generate the video from.")
197
+ parser.add_argument(
198
+ "--sample_solver",
199
+ type=str,
200
+ default='unipc',
201
+ choices=['unipc', 'dpm++'],
202
+ help="The solver used to sample.")
203
+ parser.add_argument(
204
+ "--sample_steps", type=int, default=None, help="The sampling steps.")
205
+ parser.add_argument(
206
+ "--sample_shift",
207
+ type=float,
208
+ default=None,
209
+ help="Sampling shift factor for flow matching schedulers.")
210
+ parser.add_argument(
211
+ "--sample_guide_scale",
212
+ type=float,
213
+ default=5.0,
214
+ help="Classifier free guidance scale.")
215
+
216
+ args = parser.parse_args()
217
+
218
+ _validate_args(args)
219
+
220
+ return args
221
+
222
+
223
+ def _init_logging(rank):
224
+ # logging
225
+ if rank == 0:
226
+ # set format
227
+ logging.basicConfig(
228
+ level=logging.INFO,
229
+ format="[%(asctime)s] %(levelname)s: %(message)s",
230
+ handlers=[logging.StreamHandler(stream=sys.stdout)])
231
+ else:
232
+ logging.basicConfig(level=logging.ERROR)
233
+
234
+
235
+ def generate(args):
236
+ rank = int(os.getenv("RANK", 0))
237
+ world_size = int(os.getenv("WORLD_SIZE", 1))
238
+ local_rank = int(os.getenv("LOCAL_RANK", 0))
239
+ device = local_rank
240
+ _init_logging(rank)
241
+
242
+ if args.offload_model is None:
243
+ args.offload_model = False if world_size > 1 else True
244
+ logging.info(
245
+ f"offload_model is not specified, set to {args.offload_model}.")
246
+ if world_size > 1:
247
+ torch.cuda.set_device(local_rank)
248
+ dist.init_process_group(
249
+ backend="nccl",
250
+ init_method="env://",
251
+ rank=rank,
252
+ world_size=world_size)
253
+ else:
254
+ assert not (
255
+ args.t5_fsdp or args.dit_fsdp
256
+ ), f"t5_fsdp and dit_fsdp are not supported in non-distributed environments."
257
+ assert not (
258
+ args.ulysses_size > 1 or args.ring_size > 1
259
+ ), f"context parallel are not supported in non-distributed environments."
260
+
261
+ if args.ulysses_size > 1 or args.ring_size > 1:
262
+ assert args.ulysses_size * args.ring_size == world_size, f"The number of ulysses_size and ring_size should be equal to the world size."
263
+ from xfuser.core.distributed import (initialize_model_parallel,
264
+ init_distributed_environment)
265
+ init_distributed_environment(
266
+ rank=dist.get_rank(), world_size=dist.get_world_size())
267
+
268
+ initialize_model_parallel(
269
+ sequence_parallel_degree=dist.get_world_size(),
270
+ ring_degree=args.ring_size,
271
+ ulysses_degree=args.ulysses_size,
272
+ )
273
+
274
+ if args.use_prompt_extend:
275
+ if args.prompt_extend_method == "dashscope":
276
+ prompt_expander = DashScopePromptExpander(
277
+ model_name=args.prompt_extend_model, is_vl="i2v" in args.task)
278
+ elif args.prompt_extend_method == "local_qwen":
279
+ prompt_expander = QwenPromptExpander(
280
+ model_name=args.prompt_extend_model,
281
+ is_vl="i2v" in args.task,
282
+ device=rank)
283
+ else:
284
+ raise NotImplementedError(
285
+ f"Unsupport prompt_extend_method: {args.prompt_extend_method}")
286
+
287
+ cfg = WAN_CONFIGS[args.task]
288
+ if args.ulysses_size > 1:
289
+ assert cfg.num_heads % args.ulysses_size == 0, f"`num_heads` must be divisible by `ulysses_size`."
290
+
291
+ logging.info(f"Generation job args: {args}")
292
+ logging.info(f"Generation model config: {cfg}")
293
+
294
+ if dist.is_initialized():
295
+ base_seed = [args.base_seed] if rank == 0 else [None]
296
+ dist.broadcast_object_list(base_seed, src=0)
297
+ args.base_seed = base_seed[0]
298
+
299
+ if "t2v" in args.task or "t2i" in args.task:
300
+ opt_dir=args.image
301
+ with open(args.prompt,"r")as f:
302
+ lines=f.read().strip("\n").split("\n")
303
+ # if args.prompt is None:
304
+ # args.prompt = EXAMPLE_PROMPT[args.task]["prompt"]
305
+
306
+ logging.info("Creating WanT2V pipeline.")
307
+ # wan_t2v = wan.WanT2V(
308
+ wan_t2v = WanT2V(
309
+ config=cfg,
310
+ checkpoint_dir=args.ckpt_dir,
311
+ device_id=device,
312
+ rank=rank,
313
+ t5_fsdp=args.t5_fsdp,
314
+ dit_fsdp=args.dit_fsdp,
315
+ use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
316
+ t5_cpu=args.t5_cpu,
317
+ )
318
+ for idx,line in enumerate(lines):
319
+ args.save_file="%s/%s.mp4"%(opt_dir,idx)
320
+ prompt,image=line.split("@@")
321
+ args.image=image
322
+ args.prompt=prompt
323
+ logging.info(f"Input prompt: {args.prompt}")
324
+ if args.use_prompt_extend:
325
+ logging.info("Extending prompt ...")
326
+ if rank == 0:
327
+ prompt_output = prompt_expander(
328
+ args.prompt,
329
+ tar_lang=args.prompt_extend_target_lang,
330
+ seed=args.base_seed)
331
+ if prompt_output.status == False:
332
+ logging.info(
333
+ f"Extending prompt failed: {prompt_output.message}")
334
+ logging.info("Falling back to original prompt.")
335
+ input_prompt = args.prompt
336
+ else:
337
+ input_prompt = prompt_output.prompt
338
+ input_prompt = [input_prompt]
339
+ else:
340
+ input_prompt = [None]
341
+ if dist.is_initialized():
342
+ dist.broadcast_object_list(input_prompt, src=0)
343
+ args.prompt = input_prompt[0]
344
+ logging.info(f"Extended prompt: {args.prompt}")
345
+
346
+ logging.info(
347
+ f"Generating {'image' if 't2i' in args.task else 'video'} ...")
348
+ video = wan_t2v.generate(
349
+ args.prompt,
350
+ size=SIZE_CONFIGS[args.size],
351
+ frame_num=args.frame_num,
352
+ shift=args.sample_shift,
353
+ sample_solver=args.sample_solver,
354
+ sampling_steps=args.sample_steps,
355
+ guide_scale=args.sample_guide_scale,
356
+ seed=args.base_seed,
357
+ offload_model=args.offload_model)
358
+ if rank==0:
359
+ cache_video(
360
+ tensor=video[None],
361
+ save_file=args.save_file,
362
+ fps=cfg.sample_fps,
363
+ nrow=1,
364
+ normalize=True,
365
+ value_range=(-1, 1))
366
+ else:
367
+ if args.prompt is None:
368
+ args.prompt = EXAMPLE_PROMPT[args.task]["prompt"]
369
+ if args.image is None:
370
+ args.image = EXAMPLE_PROMPT[args.task]["image"]
371
+ logging.info(f"Input prompt: {args.prompt}")
372
+ logging.info(f"Input image: {args.image}")
373
+
374
+ opt_dir=args.image
375
+ with open(args.prompt,"r",encoding="gbk")as f:
376
+ lines=f.read().strip("\n").split("\n")
377
+ logging.info("Creating WanI2V pipeline.")
378
+ # wan_i2v = wan.WanI2V(
379
+ wan_i2v = WanI2V(
380
+ config=cfg,
381
+ checkpoint_dir=args.ckpt_dir,
382
+ device_id=device,
383
+ rank=rank,
384
+ t5_fsdp=args.t5_fsdp,
385
+ dit_fsdp=args.dit_fsdp,
386
+ use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
387
+ t5_cpu=args.t5_cpu,
388
+ )
389
+
390
+ for idx,line in enumerate(lines):
391
+ # args.save_file="%s/%s.mp4"%(opt_dir,idx)
392
+ args.save_file="%s-%s.mp4"%(opt_dir,idx)
393
+ prompt,image=line.split("@@")
394
+ args.image=image
395
+ args.prompt=prompt
396
+ img = Image.open(args.image).convert("RGB")
397
+ if args.use_prompt_extend:
398
+ logging.info("Extending prompt ...")
399
+ if rank == 0:
400
+ prompt_output = prompt_expander(
401
+ args.prompt,
402
+ tar_lang=args.prompt_extend_target_lang,
403
+ image=img,
404
+ seed=args.base_seed)
405
+ if prompt_output.status == False:
406
+ logging.info(
407
+ f"Extending prompt failed: {prompt_output.message}")
408
+ logging.info("Falling back to original prompt.")
409
+ input_prompt = args.prompt
410
+ else:
411
+ input_prompt = prompt_output.prompt
412
+ input_prompt = [input_prompt]
413
+ else:
414
+ input_prompt = [None]
415
+ if dist.is_initialized():
416
+ dist.broadcast_object_list(input_prompt, src=0)
417
+ args.prompt = input_prompt[0]
418
+ logging.info(f"Extended prompt: {args.prompt}")
419
+ logging.info("Generating video ...")
420
+ if os.path.exists(args.save_file)==False:
421
+ video = wan_i2v.generate(
422
+ args,
423
+ args.prompt,
424
+ img,
425
+ max_area=MAX_AREA_CONFIGS[args.size],
426
+ frame_num=args.frame_num,
427
+ shift=args.sample_shift,
428
+ sample_solver=args.sample_solver,
429
+ sampling_steps=args.sample_steps,
430
+ guide_scale=args.sample_guide_scale,
431
+ seed=args.base_seed,
432
+ offload_model=args.offload_model,
433
+
434
+ student_steps=args.student_steps,#12,
435
+ norm=2,
436
+ frame_type="4",
437
+ channel_type="all",
438
+
439
+ )
440
+ if rank==0:
441
+ cache_video(
442
+ tensor=video[None],
443
+ save_file=args.save_file,
444
+ fps=cfg.sample_fps,
445
+ nrow=1,
446
+ normalize=True,
447
+ value_range=(-1, 1))
448
+ logging.info("Finished.")
449
+
450
+
451
+ if __name__ == "__main__":
452
+ args = _parse_args()
453
+ generate(args)
generate-pi-i2v.py ADDED
@@ -0,0 +1,418 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+
3
+ # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
4
+ import os
5
+ os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
6
+ import argparse
7
+ from datetime import datetime
8
+ import logging
9
+ import sys
10
+ import warnings
11
+
12
+ warnings.filterwarnings('ignore')
13
+
14
+ import torch, random
15
+ import torch.distributed as dist
16
+ from PIL import Image
17
+
18
+ import wan
19
+ from wan.configs import WAN_CONFIGS, SIZE_CONFIGS, MAX_AREA_CONFIGS, SUPPORTED_SIZES
20
+ from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander
21
+ from wan.utils.utils import cache_video, cache_image, str2bool
22
+
23
+ EXAMPLE_PROMPT = {
24
+ "t2v-1.3B": {
25
+ "prompt": "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
26
+ },
27
+ "t2v-14B": {
28
+ "prompt": "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
29
+ },
30
+ "t2i-14B": {
31
+ "prompt": "一个朴素端庄的美人",
32
+ },
33
+ "i2v-14B": {
34
+ "prompt":
35
+ "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside.",
36
+ "image":
37
+ "examples/i2v_input.JPG",
38
+ },
39
+ }
40
+
41
+
42
+ def _validate_args(args):
43
+ # Basic check
44
+ assert args.ckpt_dir is not None, "Please specify the checkpoint directory."
45
+ assert args.task in WAN_CONFIGS, f"Unsupport task: {args.task}"
46
+ assert args.task in EXAMPLE_PROMPT, f"Unsupport task: {args.task}"
47
+
48
+ # The default sampling steps are 40 for image-to-video tasks and 50 for text-to-video tasks.
49
+ if args.sample_steps is None:
50
+ args.sample_steps = 40 if "i2v" in args.task else 50
51
+
52
+ if args.sample_shift is None:
53
+ args.sample_shift = 5.0
54
+ if "i2v" in args.task and args.size in ["832*480", "480*832"]:
55
+ args.sample_shift = 3.0
56
+
57
+ # The default number of frames are 1 for text-to-image tasks and 81 for other tasks.
58
+ if args.frame_num is None:
59
+ args.frame_num = 1 if "t2i" in args.task else 81
60
+
61
+ # T2I frame_num check
62
+ if "t2i" in args.task:
63
+ assert args.frame_num == 1, f"Unsupport frame_num {args.frame_num} for task {args.task}"
64
+
65
+ args.base_seed = args.base_seed if args.base_seed >= 0 else random.randint(
66
+ 0, sys.maxsize)
67
+ # Size check
68
+ assert args.size in SUPPORTED_SIZES[
69
+ args.
70
+ task], f"Unsupport size {args.size} for task {args.task}, supported sizes are: {', '.join(SUPPORTED_SIZES[args.task])}"
71
+
72
+
73
+ def _parse_args():
74
+ parser = argparse.ArgumentParser(
75
+ description="Generate a image or video from a text prompt or image using Wan"
76
+ )
77
+ parser.add_argument(
78
+ "--task",
79
+ type=str,
80
+ default="t2v-14B",
81
+ choices=list(WAN_CONFIGS.keys()),
82
+ help="The task to run.")
83
+ parser.add_argument(
84
+ "--size",
85
+ type=str,
86
+ default="1280*720",
87
+ choices=list(SIZE_CONFIGS.keys()),
88
+ help="The area (width*height) of the generated video. For the I2V task, the aspect ratio of the output video will follow that of the input image."
89
+ )
90
+ parser.add_argument(
91
+ "--frame_num",
92
+ type=int,
93
+ default=None,
94
+ help="How many frames to sample from a image or video. The number should be 4n+1"
95
+ )
96
+ parser.add_argument(
97
+ "--ckpt_dir",
98
+ type=str,
99
+ default=None,
100
+ help="The path to the checkpoint directory.")
101
+ parser.add_argument(
102
+ "--offload_model",
103
+ type=str2bool,
104
+ default=None,
105
+ help="Whether to offload the model to CPU after each model forward, reducing GPU memory usage."
106
+ )
107
+ parser.add_argument(
108
+ "--ulysses_size",
109
+ type=int,
110
+ default=1,
111
+ help="The size of the ulysses parallelism in DiT.")
112
+ parser.add_argument(
113
+ "--ring_size",
114
+ type=int,
115
+ default=1,
116
+ help="The size of the ring attention parallelism in DiT.")
117
+ parser.add_argument(
118
+ "--t5_fsdp",
119
+ action="store_true",
120
+ default=False,
121
+ help="Whether to use FSDP for T5.")
122
+ parser.add_argument(
123
+ "--t5_cpu",
124
+ action="store_true",
125
+ default=False,
126
+ help="Whether to place T5 model on CPU.")
127
+ parser.add_argument(
128
+ "--dit_fsdp",
129
+ action="store_true",
130
+ default=False,
131
+ help="Whether to use FSDP for DiT.")
132
+ parser.add_argument(
133
+ "--save_file",
134
+ type=str,
135
+ default=None,
136
+ help="The file to save the generated image or video to.")
137
+ parser.add_argument(
138
+ "--prompt",
139
+ type=str,
140
+ default=None,
141
+ help="The prompt to generate the image or video from.")
142
+ parser.add_argument(
143
+ "--use_prompt_extend",
144
+ action="store_true",
145
+ default=False,
146
+ help="Whether to use prompt extend.")
147
+ parser.add_argument(
148
+ "--prompt_extend_method",
149
+ type=str,
150
+ default="local_qwen",
151
+ choices=["dashscope", "local_qwen"],
152
+ help="The prompt extend method to use.")
153
+ parser.add_argument(
154
+ "--prompt_extend_model",
155
+ type=str,
156
+ default=None,
157
+ help="The prompt extend model to use.")
158
+ parser.add_argument(
159
+ "--prompt_extend_target_lang",
160
+ type=str,
161
+ default="ch",
162
+ choices=["ch", "en"],
163
+ help="The target language of prompt extend.")
164
+ parser.add_argument(
165
+ "--base_seed",
166
+ type=int,
167
+ default=-1,
168
+ help="The seed to use for generating the image or video.")
169
+ parser.add_argument(
170
+ "--image",
171
+ type=str,
172
+ default=None,
173
+ help="The image to generate the video from.")
174
+ parser.add_argument(
175
+ "--sample_solver",
176
+ type=str,
177
+ default='unipc',
178
+ choices=['unipc', 'dpm++'],
179
+ help="The solver used to sample.")
180
+ parser.add_argument(
181
+ "--sample_steps", type=int, default=None, help="The sampling steps.")
182
+ parser.add_argument(
183
+ "--sample_shift",
184
+ type=float,
185
+ default=None,
186
+ help="Sampling shift factor for flow matching schedulers.")
187
+ parser.add_argument(
188
+ "--sample_guide_scale",
189
+ type=float,
190
+ default=5.0,
191
+ help="Classifier free guidance scale.")
192
+
193
+ args = parser.parse_args()
194
+
195
+ _validate_args(args)
196
+
197
+ return args
198
+
199
+
200
+ def _init_logging(rank):
201
+ # logging
202
+ if rank == 0:
203
+ # set format
204
+ logging.basicConfig(
205
+ level=logging.INFO,
206
+ format="[%(asctime)s] %(levelname)s: %(message)s",
207
+ handlers=[logging.StreamHandler(stream=sys.stdout)])
208
+ else:
209
+ logging.basicConfig(level=logging.ERROR)
210
+
211
+
212
+ def generate(args):
213
+ rank = int(os.getenv("RANK", 0))
214
+ world_size = int(os.getenv("WORLD_SIZE", 1))
215
+ local_rank = int(os.getenv("LOCAL_RANK", 0))
216
+ device = local_rank
217
+ _init_logging(rank)
218
+
219
+ if args.offload_model is None:
220
+ args.offload_model = False if world_size > 1 else True
221
+ logging.info(
222
+ f"offload_model is not specified, set to {args.offload_model}.")
223
+ if world_size > 1:
224
+ torch.cuda.set_device(local_rank)
225
+ dist.init_process_group(
226
+ backend="nccl",
227
+ init_method="env://",
228
+ rank=rank,
229
+ world_size=world_size)
230
+ else:
231
+ assert not (
232
+ args.t5_fsdp or args.dit_fsdp
233
+ ), f"t5_fsdp and dit_fsdp are not supported in non-distributed environments."
234
+ assert not (
235
+ args.ulysses_size > 1 or args.ring_size > 1
236
+ ), f"context parallel are not supported in non-distributed environments."
237
+
238
+ if args.ulysses_size > 1 or args.ring_size > 1:
239
+ assert args.ulysses_size * args.ring_size == world_size, f"The number of ulysses_size and ring_size should be equal to the world size."
240
+ from xfuser.core.distributed import (initialize_model_parallel,
241
+ init_distributed_environment)
242
+ init_distributed_environment(
243
+ rank=dist.get_rank(), world_size=dist.get_world_size())
244
+
245
+ initialize_model_parallel(
246
+ sequence_parallel_degree=dist.get_world_size(),
247
+ ring_degree=args.ring_size,
248
+ ulysses_degree=args.ulysses_size,
249
+ )
250
+
251
+ if args.use_prompt_extend:
252
+ if args.prompt_extend_method == "dashscope":
253
+ prompt_expander = DashScopePromptExpander(
254
+ model_name=args.prompt_extend_model, is_vl="i2v" in args.task)
255
+ elif args.prompt_extend_method == "local_qwen":
256
+ prompt_expander = QwenPromptExpander(
257
+ model_name=args.prompt_extend_model,
258
+ is_vl="i2v" in args.task,
259
+ device=rank)
260
+ else:
261
+ raise NotImplementedError(
262
+ f"Unsupport prompt_extend_method: {args.prompt_extend_method}")
263
+
264
+ cfg = WAN_CONFIGS[args.task]
265
+ if args.ulysses_size > 1:
266
+ assert cfg.num_heads % args.ulysses_size == 0, f"`num_heads` must be divisible by `ulysses_size`."
267
+
268
+ logging.info(f"Generation job args: {args}")
269
+ logging.info(f"Generation model config: {cfg}")
270
+
271
+ if dist.is_initialized():
272
+ base_seed = [args.base_seed] if rank == 0 else [None]
273
+ dist.broadcast_object_list(base_seed, src=0)
274
+ args.base_seed = base_seed[0]
275
+
276
+ if "t2v" in args.task or "t2i" in args.task:
277
+ opt_dir=args.image
278
+ with open(args.prompt,"r")as f:
279
+ lines=f.read().strip("\n").split("\n")
280
+ # if args.prompt is None:
281
+ # args.prompt = EXAMPLE_PROMPT[args.task]["prompt"]
282
+ for idx,line in enumerate(lines):
283
+ args.save_file="%s/%s.mp4"%(opt_dir,idx)
284
+ prompt,image=line.split("@@")
285
+ args.image=image
286
+ args.prompt=prompt
287
+ logging.info(f"Input prompt: {args.prompt}")
288
+ if args.use_prompt_extend:
289
+ logging.info("Extending prompt ...")
290
+ if rank == 0:
291
+ prompt_output = prompt_expander(
292
+ args.prompt,
293
+ tar_lang=args.prompt_extend_target_lang,
294
+ seed=args.base_seed)
295
+ if prompt_output.status == False:
296
+ logging.info(
297
+ f"Extending prompt failed: {prompt_output.message}")
298
+ logging.info("Falling back to original prompt.")
299
+ input_prompt = args.prompt
300
+ else:
301
+ input_prompt = prompt_output.prompt
302
+ input_prompt = [input_prompt]
303
+ else:
304
+ input_prompt = [None]
305
+ if dist.is_initialized():
306
+ dist.broadcast_object_list(input_prompt, src=0)
307
+ args.prompt = input_prompt[0]
308
+ logging.info(f"Extended prompt: {args.prompt}")
309
+
310
+ logging.info("Creating WanT2V pipeline.")
311
+ wan_t2v = wan.WanT2V(
312
+ config=cfg,
313
+ checkpoint_dir=args.ckpt_dir,
314
+ device_id=device,
315
+ rank=rank,
316
+ t5_fsdp=args.t5_fsdp,
317
+ dit_fsdp=args.dit_fsdp,
318
+ use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
319
+ t5_cpu=args.t5_cpu,
320
+ )
321
+ logging.info(
322
+ f"Generating {'image' if 't2i' in args.task else 'video'} ...")
323
+ video = wan_t2v.generate(
324
+ args.prompt,
325
+ size=SIZE_CONFIGS[args.size],
326
+ frame_num=args.frame_num,
327
+ shift=args.sample_shift,
328
+ sample_solver=args.sample_solver,
329
+ sampling_steps=args.sample_steps,
330
+ guide_scale=args.sample_guide_scale,
331
+ seed=args.base_seed,
332
+ offload_model=args.offload_model)
333
+ if rank==0:
334
+ cache_video(
335
+ tensor=video[None],
336
+ save_file=args.save_file,
337
+ fps=cfg.sample_fps,
338
+ nrow=1,
339
+ normalize=True,
340
+ value_range=(-1, 1))
341
+ else:
342
+ if args.prompt is None:
343
+ args.prompt = EXAMPLE_PROMPT[args.task]["prompt"]
344
+ if args.image is None:
345
+ args.image = EXAMPLE_PROMPT[args.task]["image"]
346
+ logging.info(f"Input prompt: {args.prompt}")
347
+ logging.info(f"Input image: {args.image}")
348
+
349
+ opt_dir=args.image
350
+ with open(args.prompt,"r",encoding="gbk")as f:
351
+ lines=f.read().strip("\n").split("\n")
352
+ logging.info("Creating WanI2V pipeline.")
353
+ wan_i2v = wan.WanI2V(
354
+ config=cfg,
355
+ checkpoint_dir=args.ckpt_dir,
356
+ device_id=device,
357
+ rank=rank,
358
+ t5_fsdp=args.t5_fsdp,
359
+ dit_fsdp=args.dit_fsdp,
360
+ use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
361
+ t5_cpu=args.t5_cpu,
362
+ )
363
+
364
+ for idx,line in enumerate(lines):
365
+ args.save_file="%s/%s.mp4"%(opt_dir,idx)
366
+ prompt,image=line.split("@@")
367
+ args.image=image
368
+ args.prompt=prompt
369
+ img = Image.open(args.image).convert("RGB")
370
+ if args.use_prompt_extend:
371
+ logging.info("Extending prompt ...")
372
+ if rank == 0:
373
+ prompt_output = prompt_expander(
374
+ args.prompt,
375
+ tar_lang=args.prompt_extend_target_lang,
376
+ image=img,
377
+ seed=args.base_seed)
378
+ if prompt_output.status == False:
379
+ logging.info(
380
+ f"Extending prompt failed: {prompt_output.message}")
381
+ logging.info("Falling back to original prompt.")
382
+ input_prompt = args.prompt
383
+ else:
384
+ input_prompt = prompt_output.prompt
385
+ input_prompt = [input_prompt]
386
+ else:
387
+ input_prompt = [None]
388
+ if dist.is_initialized():
389
+ dist.broadcast_object_list(input_prompt, src=0)
390
+ args.prompt = input_prompt[0]
391
+ logging.info(f"Extended prompt: {args.prompt}")
392
+ logging.info("Generating video ...")
393
+ if os.path.exists(args.save_file)==False:
394
+ video = wan_i2v.generate(
395
+ args.prompt,
396
+ img,
397
+ max_area=MAX_AREA_CONFIGS[args.size],
398
+ frame_num=args.frame_num,
399
+ shift=args.sample_shift,
400
+ sample_solver=args.sample_solver,
401
+ sampling_steps=args.sample_steps,
402
+ guide_scale=args.sample_guide_scale,
403
+ seed=args.base_seed,
404
+ offload_model=args.offload_model)
405
+ if rank==0:
406
+ cache_video(
407
+ tensor=video[None],
408
+ save_file=args.save_file,
409
+ fps=cfg.sample_fps,
410
+ nrow=1,
411
+ normalize=True,
412
+ value_range=(-1, 1))
413
+ logging.info("Finished.")
414
+
415
+
416
+ if __name__ == "__main__":
417
+ args = _parse_args()
418
+ generate(args)
get-med.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ datas=[
2
+ [3, 12, 38, 55, 68, 72, 76, 79, 82, 84, 87, 89, 91, 92, 94, 96],
3
+ [2, 5, 9, 16, 29, 42, 58, 68, 75, 79, 83, 88, 92, 94, 95, 96],
4
+ [1, 3, 7, 13, 24, 36, 44, 54, 63, 71, 78, 85, 89, 93, 95, 96],
5
+ [3, 10, 39, 60, 73, 77, 81, 84, 86, 88, 90, 92, 93, 94, 95, 96],
6
+ [2, 5, 11, 21, 36, 51, 65, 73, 80, 85, 88, 91, 93, 94, 95, 96],
7
+ [1, 3, 6, 11, 20, 36, 49, 65, 71, 77, 83, 87, 91, 94, 95, 96],
8
+ [2, 6, 15, 26, 39, 49, 57, 64, 70, 74, 80, 86, 90, 93, 95, 96],
9
+ [1, 4, 9, 17, 30, 49, 63, 71, 81, 86, 89, 91, 93, 94, 95, 96],
10
+ [4, 13, 29, 45, 58, 67, 73, 76, 80, 84, 88, 90, 92, 94, 95, 96],
11
+ ]
12
+ def calculate_median(arr):
13
+ sorted_arr = sorted(arr)
14
+ n = len(sorted_arr)
15
+ middle_index = n // 2
16
+ return sorted_arr[middle_index]
17
+
18
+ opt=[]
19
+ leng=len(datas[0])
20
+ len_datas=len(datas)
21
+ for i in range(leng):
22
+ tmp=[datas[j][i]for j in range(len_datas)]
23
+ opt.append(calculate_median(tmp))
24
+ print(opt)
25
+ #544P#96-12#[5, 20, 54, 63, 71, 79, 82, 87, 91, 94, 95, 96]
note-webui.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ python generate-pi-i2v-app-os.py --task i2v-14B --size 960*544 --ckpt_dir /data/docker/eryu51mmd
2
+
3
+
4
+
5
+
6
+ python generate-pi-i2v-app-os.py --task i2v-14B --size 960*544 --ckpt_dir /data/docker/eryu-mysp2v2-500/lns
7
+ python generate-pi-i2v-app-os.py --task i2v-14B --size 960*544 --ckpt_dir /data/docker/eryu0417
8
+
9
+ todo:
10
+ add motion
preprocess/extract-clip.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ nohup python preprocess/extract-clip.py 0 2 >> clip.log 2>&1 &
3
+ nohup python preprocess/extract-clip.py 1 2 >> clip.log 2>&1 &
4
+
5
+ 0/1: What part does this process do
6
+ 2: It consists of two parts in total.
7
+ '''
8
+ root_mp4s="test_data/mp4root"
9
+ h,w=480,832
10
+ opt_root="output_root/clip"
11
+ checkpoint_dir="/DATA/bvac/personal/wan21/Wan2.1-I2V-14B-720P"
12
+
13
+
14
+ import os,sys,traceback
15
+ import pdb
16
+ all=int(sys.argv[2])
17
+ i_part=int(sys.argv[1])
18
+ # os.environ["CUDA_VISIBLE_DEVICES"]=str(int(sys.argv[1])%4)
19
+ os.environ["CUDA_VISIBLE_DEVICES"]=sys.argv[1]
20
+ import pdb,torch
21
+ from wan.modules.clip import CLIPModel
22
+ device="cuda"
23
+ clip = CLIPModel(
24
+ dtype=torch.float16,
25
+ device=device,
26
+ checkpoint_path=os.path.join(checkpoint_dir,'models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth'),
27
+ tokenizer_path=os.path.join(checkpoint_dir, 'xlm-roberta-large'))
28
+
29
+ clip.model = clip.model.to(device)
30
+ from decord import VideoReader
31
+ import torchvision.transforms.functional as TF
32
+ def read_img(path):
33
+ vr = VideoReader(uri=path, height=-1, width=-1)
34
+ temp_frms = vr.get_batch([2])
35
+ return (TF.to_tensor(temp_frms.asnumpy().astype("float32")[0])/255).sub_(0.5).div_(0.5).to(device)
36
+
37
+ os.makedirs(opt_root,exist_ok=True)
38
+ def go(todos):
39
+ for path in todos:
40
+ try:
41
+ name=os.path.basename(path).replace(".mp4",".pt")
42
+ if os.path.exists("%s/%s"%(opt_root,name)):continue
43
+ img = read_img(path)
44
+ clip_context = clip.visual([img[:, None, :, :]])
45
+ save_path="%s/%s"%(opt_root,name)
46
+ torch.save(clip_context, save_path)
47
+ except:
48
+ print(path,traceback.format_exc())
49
+
50
+ todo=[]
51
+ for name in os.listdir(root_mp4s):
52
+ todo.append("%s/%s"%(root_mp4s,name))
53
+ todo=sorted(todo)
54
+ todo=todo[i_part::all]
55
+ go(todo)
56
+
57
+
preprocess/extract-t5.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ nohup python preprocess/extract-t5.py 0 2 >> t5.log 2>&1 &
3
+ nohup python preprocess/extract-t5.py 1 2 >> t5.log 2>&1 &
4
+
5
+ 0/1: What part does this process do
6
+ 2: It consists of two parts in total.
7
+ '''
8
+ txt_path="test_data/train_data_prompts.txt"
9
+ opt_root="output_root/t5"
10
+ checkpoint_dir="/DATA/bvac/personal/wan21/Wan2.1-I2V-14B-720P"
11
+
12
+ import os,sys
13
+ all=int(sys.argv[2])
14
+ i_part=int(sys.argv[1])
15
+ # os.environ["CUDA_VISIBLE_DEVICES"]=str(int(sys.argv[1])%4)
16
+ os.environ["CUDA_VISIBLE_DEVICES"]=sys.argv[1]
17
+ import pdb,torch
18
+ from wan.modules.t5 import T5EncoderModel
19
+ device="cuda"
20
+ text_encoder = T5EncoderModel(
21
+ text_len=512,
22
+ dtype=torch.bfloat16,
23
+ device=torch.device('cpu'),
24
+ checkpoint_path=os.path.join(checkpoint_dir, 'models_t5_umt5-xxl-enc-bf16.pth'),
25
+ tokenizer_path=os.path.join(checkpoint_dir, 'google/umt5-xxl'),
26
+ shard_fn=None,
27
+ )
28
+ text_encoder.model=text_encoder.model.to(device)
29
+ os.makedirs(opt_root,exist_ok=True)
30
+ def go(todos):
31
+ for name,text in todos:
32
+ try:
33
+ if os.path.exists("%s/%s"%(opt_root,name)):continue
34
+ context = text_encoder([text], device)[0].cpu()#torch.Size([138, 4096])#"In this scene, a man with a beard is seen tending to a woman who lies in bed, her face illuminated by the soft glow of a nearby light source. The man, dressed in a blue robe adorned with intricate designs, holds a bowl, possibly containing a healing potion or a magical elixir. The woman, clad in a pink garment, appears to be resting or possibly unwell, as she lies on her side with her eyes closed. The setting suggests a historical or medieval context, with the dimly lit room and the man's attire evoking a sense of timelessness and mystery. "
35
+ save_path="%s/%s"%(opt_root,name)
36
+ torch.save(context,save_path)
37
+ except:
38
+ print(text,traceback.format_exc())
39
+
40
+
41
+ todo=[]
42
+ with open(txt_path,"r")as f:lines=f.read().strip("\n").split("\n")
43
+ for line in lines:
44
+ todo.append(line.split("|"))
45
+ todo=sorted(todo)[i_part::all]
46
+ go(todo)
preprocess/extract-vae1.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ nohup python preprocess/extract-vae1.py 0 2 >> vae1.log 2>&1 &
3
+ nohup python preprocess/extract-vae1.py 1 2 >> vae1.log 2>&1 &
4
+
5
+ 0/1: What part does this process do
6
+ 2: It consists of two parts in total.
7
+ '''
8
+ root_mp4s="test_data/mp4root"
9
+ h,w=480,832
10
+ num_frames = 49
11
+ opt_root="output_root/vae1"
12
+ checkpoint_dir="/DATA/bvac/personal/wan21/Wan2.1-I2V-14B-480P"
13
+
14
+
15
+
16
+
17
+ import os,sys,traceback
18
+ import pdb
19
+ os.environ["CUDA_VISIBLE_DEVICES"]=sys.argv[1]
20
+ all=int(sys.argv[2])
21
+ i_part=int(os.environ["CUDA_VISIBLE_DEVICES"])
22
+ import pdb,torch
23
+ from wan.modules.vae import WanVAE
24
+ device="cuda"
25
+ vae = WanVAE(vae_pth=os.path.join(checkpoint_dir, 'Wan2.1_VAE.pth'),device=device)
26
+
27
+ from decord import VideoReader
28
+ import torchvision.transforms.functional as TF
29
+ def read_img(path):
30
+ vr = VideoReader(uri=path, height=-1, width=-1)
31
+ temp_frms = vr.get_batch([2])
32
+ return (TF.to_tensor(temp_frms.asnumpy().astype("float32")[0])/255).sub_(0.5).div_(0.5).to(device)
33
+
34
+ os.makedirs(opt_root,exist_ok=True)
35
+ def go(todos):
36
+ for path in todos:
37
+ try:
38
+ name=os.path.basename(path).replace(".mp4",".pt")
39
+ if os.path.exists("%s/%s"%(opt_root,name)):continue
40
+ img = read_img(path)
41
+ tensorr = vae.encode([
42
+ torch.concat([
43
+ torch.nn.functional.interpolate(
44
+ img[None].cpu(), size=(h, w), mode='bicubic').transpose(
45
+ 0, 1),
46
+ torch.zeros(3, num_frames-1, h, w)
47
+ ], dim=1).to(device)
48
+ ])[0].cpu() # torch.Size([16, 21, 90, 160])#21->13
49
+ save_path="%s/%s"%(opt_root,name)
50
+ torch.save(tensorr, save_path)
51
+ except:
52
+ print(path,traceback.format_exc())
53
+
54
+ todo=[]
55
+ for name in os.listdir(root_mp4s):
56
+ todo.append("%s/%s"%(root_mp4s,name))
57
+ todo=sorted(todo)
58
+ todo=todo[i_part::all]
59
+ go(todo)
60
+
61
+
62
+
preprocess/extract-vae_all.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ nohup python preprocess/extract-vae_all.py 0 2 >> t5.log 2>&1 &
3
+ nohup python preprocess/extract-vae_all.py 1 2 >> t5.log 2>&1 &
4
+
5
+ 0/1: What part does this process do
6
+ 2: It consists of two parts in total.
7
+ '''
8
+ root_mp4s="test_data/mp4root"
9
+ h,w=480,832
10
+ num_frames = 49
11
+ opt_root="output_root/vae_all"
12
+ checkpoint_dir="/DATA/bvac/personal/wan21/Wan2.1-I2V-14B-720P"
13
+
14
+
15
+ import os,sys,traceback,numpy as np
16
+ import pdb
17
+ os.environ["CUDA_VISIBLE_DEVICES"]=sys.argv[1]
18
+ all=int(sys.argv[2])
19
+ i_part=int(os.environ["CUDA_VISIBLE_DEVICES"])
20
+ import pdb,torch
21
+ from wan.modules.vae import WanVAE
22
+ device="cuda"
23
+ vae = WanVAE(vae_pth=os.path.join(checkpoint_dir, 'Wan2.1_VAE.pth'),device=device)
24
+ from decord import VideoReader
25
+ import torchvision.transforms.functional as TF
26
+ def read_img(path):
27
+ vr = VideoReader(uri=path, height=-1, width=-1)
28
+ actual_fps=vr.get_avg_fps()
29
+ start=2
30
+ wanted_fps=16
31
+ end = int(start + num_frames / wanted_fps * actual_fps)
32
+ indices = np.arange(start, end, (end - start) / num_frames).astype(int)
33
+ # print(100000,start,end,indices,len(indices),actual_fps,len(vr))
34
+ temp_frms = vr.get_batch(indices)
35
+ temp_frms = torch.from_numpy(temp_frms.asnumpy()).to(device).float()/255
36
+ temp_frms-=0.5
37
+ temp_frms/=0.5#torch.Size([49, 1080, 1920, 3])
38
+ temp_frms=temp_frms.permute(3,0,1,2)#torch.Size([3, 49, 1080, 1920])
39
+ return temp_frms
40
+
41
+
42
+ os.makedirs(opt_root,exist_ok=True)
43
+ def go(todos):
44
+ for path in todos:
45
+ try:
46
+ name=os.path.basename(path).rsplit('.', maxsplit=1)[0]+'.pt'
47
+ if os.path.exists("%s/%s"%(opt_root,name)):continue
48
+ img = read_img(path)
49
+ aa=torch.nn.functional.interpolate(img, size=(h, w), mode='bicubic')
50
+ tensorr = vae.encode(aa.unsqueeze(0))[0].cpu() # torch.Size([16, 21, 90, 160])#21->13
51
+ save_path="%s/%s"%(opt_root,name)
52
+ torch.save(tensorr, save_path)
53
+ except:
54
+ print(path,traceback.format_exc())
55
+
56
+ todo=[]
57
+ for name in os.listdir(root_mp4s):
58
+ todo.append("%s/%s"%(root_mp4s,name))
59
+ todo=sorted(todo)
60
+ todo=todo[i_part::all]
61
+ go(todo)
62
+
63
+
64
+
pyproject.toml ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [build-system]
2
+ requires = ["setuptools"]
3
+ build-backend = "setuptools.build_meta"
4
+
5
+ [project]
6
+ name = "fastvideo"
7
+ version = "1.2.0"
8
+ description = "FastVideo"
9
+ readme = "README1.md"
10
+ requires-python = ">=3.8"
11
+ classifiers = [
12
+ "Programming Language :: Python :: 3",
13
+ "License :: OSI Approved :: Apache Software License",
14
+ ]
15
+ dependencies = [
16
+ #"transformers==4.46.1", "accelerate==1.0.1", "tokenizers==0.20.1", "albumentations==1.4.20", "av==13.1.0",
17
+ #"decord==0.6.0", "einops==0.8.0", "fastapi==0.115.3", "gdown==5.2.0", "h5py==3.12.1", "idna==3.6", "imageio==2.36.0",
18
+ #"matplotlib==3.9.2", "numpy==1.26.3", "omegaconf==2.3.0", "opencv-python==4.10.0.84", "opencv-python-headless==4.10.0.84",
19
+ #"pandas==2.2.3", "pillow==10.2.0", "pydub==0.25.1", "pytorch-lightning==2.4.0", "pytorchvideo==0.1.5", "PyYAML==6.0.1",
20
+ #"regex==2024.9.11", "requests==2.31.0", "scikit-learn==1.5.2", "scipy==1.14.1", "six==1.16.0", "test-tube==0.7.5",
21
+ #"timm==1.0.11", "torchdiffeq==0.2.4", "torchmetrics==1.5.1", "tqdm==4.66.5", "urllib3==2.2.0", "uvicorn==0.32.0",
22
+ #"scikit-video==1.1.11", "imageio-ffmpeg==0.5.1", "sentencepiece==0.2.0", "beautifulsoup4==4.12.3", "ftfy==6.3.0",
23
+ #"moviepy==1.0.3", "wandb==0.18.5", "tensorboard==2.18.0", "pydantic==2.9.2", "gradio==5.3.0", "huggingface_hub==0.26.1", "protobuf==5.28.3",
24
+ #"watch", "gpustat", "peft==0.13.2", "liger_kernel==0.4.1", "einops==0.8.0", "wheel==0.44.0", "loguru", "diffusers==0.32.0", "bitsandbytes"]
25
+ #"watch", "gpustat", "bitsandbytes"
26
+ ]
27
+
28
+
29
+ [tool.setuptools.packages.find]
30
+ exclude = ["assets*", "docker*", "docs", "scripts*"]
31
+
32
+ [tool.wheel]
33
+ exclude = ["assets*", "docker*", "docs", "scripts*"]
34
+
35
+ [tool.mypy]
36
+ warn_return_any = true
37
+ warn_unused_configs = true
38
+ ignore_missing_imports = true
39
+ disallow_untyped_calls = true
40
+ check_untyped_defs = true
41
+ no_implicit_optional = true
req-fastvideo.txt ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ transformers>=4.46.1
2
+ accelerate>=1.0.1
3
+ tokenizers>=0.20.1
4
+ albumentations>=1.4.20
5
+ av>=13.1.0
6
+ decord>=0.6.0
7
+ einops>=0.8.0
8
+ fastapi>=0.115.3
9
+ gdown>=5.2.0
10
+ h5py>=3.12.1
11
+ idna>=3.6
12
+ imageio>=2.36.0
13
+ matplotlib>=3.9.2
14
+ numpy>=1.26.3
15
+ omegaconf>=2.3.0
16
+ opencv-python>=4.10.0.84
17
+ opencv-python-headless>=4.10.0.84
18
+ pandas>=2.2.3
19
+ pillow>=10.2.0
20
+ pydub>=0.25.1
21
+ pytorch-lightning>=2.4.0
22
+ pytorchvideo>=0.1.5
23
+ PyYAML>=6.0.1
24
+ regex>=2024.9.11
25
+ requests>=2.31.0
26
+ scikit-learn>=1.5.2
27
+ scipy>=1.14.1
28
+ six>=1.16.0
29
+ test-tube>=0.7.5
30
+ timm>=1.0.11
31
+ torchdiffeq>=0.2.4
32
+ torchmetrics>=1.5.1
33
+ tqdm>=4.66.5
34
+ urllib3>=2.2.0
35
+ uvicorn>=0.32.0
36
+ scikit-video>=1.1.11
37
+ imageio-ffmpeg>=0.5.1
38
+ sentencepiece>=0.2.0
39
+ beautifulsoup4>=4.12.3
40
+ ftfy>=6.3.0
41
+ moviepy>=1.0.3
42
+ wandb>=0.18.5
43
+ tensorboard>=2.18.0
44
+ pydantic>=2.9.2
45
+ gradio>=5.3.0
46
+ huggingface_hub>=0.26.1
47
+ protobuf>=5.28.3
48
+ watch
49
+ gpustat
50
+ peft>=0.13.2
51
+ liger_kernel>=0.4.1
52
+ einops>=0.8.0
53
+ wheel>=0.44.0
54
+ loguru
55
+ torch
56
+ torchvision
57
+ ninja
58
+ safetensors
59
+ packaging
requirements.txt ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ torch>=2.4.0
2
+ torchvision>=0.19.0
3
+ opencv-python>=4.9.0.80
4
+ diffusers>=0.31.0
5
+ transformers>=4.49.0
6
+ tokenizers>=0.20.3
7
+ accelerate>=1.1.1
8
+ tqdm
9
+ imageio
10
+ easydict
11
+ ftfy
12
+ dashscope
13
+ imageio-ffmpeg
14
+ gradio>=5.0.0
15
+ numpy>=1.23.5,<2
scripts/distill/distill_cog.sh ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ export WANDB_BASE_URL="https://api.wandb.ai"
2
+ export WANDB_MODE=online
3
+ export HF_ENDPOINT="https://hf-mirror.com"
4
+ export PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True
5
+ #based on fm1500
6
+ torchrun --nnodes 1 --nproc_per_node 8 \
7
+ fastvideo/distill_i2v_cog.py \
8
+ --seed 42 \
9
+ --pretrained_model_name_or_path /DATA/bvac/personal/opensora/zhipu/pretrained/danzhen-i2v-97f-720P-16fps/danzhen-i2v-97f-720P-16fps \
10
+ --dit_model_name_or_path /DATA/bvac/personal/opensora/zhipu/pretrained/danzhen-i2v-97f-720P-16fps/danzhen-i2v-97f-720P-16fps \
11
+ --model_type "cog" \
12
+ --cache_dir .cache \
13
+ --data_json_path /DATA/bvac/personal/fastvideo/FastVideo-main/data/Image-Vid-Finetune-cog480P-49f12fps-fixvae/videos2caption.json \
14
+ --validation_prompt_dir /DATA/bvac/personal/fastvideo/FastVideo-main/data/Image-Vid-Finetune-cog480P-49f12fps-fixvae/validation \
15
+ --gradient_checkpointing \
16
+ --train_batch_size=1 \
17
+ --num_latent_t 24 \
18
+ --sp_size 1 \
19
+ --train_sp_batch_size 1 \
20
+ --dataloader_num_workers 4 \
21
+ --gradient_accumulation_steps=1 \
22
+ --max_train_steps=20000 \
23
+ --learning_rate=3e-6 \
24
+ --mixed_precision="bf16" \
25
+ --checkpointing_steps=400 \
26
+ --validation_steps 15000000 \
27
+ --validation_sampling_steps "2,4,8" \
28
+ --checkpoints_total_limit 3 \
29
+ --allow_tf32 \
30
+ --ema_start_step 0 \
31
+ --cfg 0.0 \
32
+ --log_validation \
33
+ --output_dir=outputs-test-cog_i2v_5B-wukong49-distill-3e-6-fixvae2 \
34
+ --tracker_project_name video3w480Ptest_cog49i2v_fix_distill-3e-6-fixvae2 \
35
+ --num_frames 49 \
36
+ --shift 17 \
37
+ --validation_guidance_scale "1.0" \
38
+ --num_euler_timesteps 50 \
39
+ --multi_phased_distill_schedule "4000-1" \
40
+ --not_apply_cfg_solver
scripts/distill/distill_cog720-49.sh ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ export WANDB_BASE_URL="https://api.wandb.ai"
2
+ export WANDB_MODE=online
3
+ export HF_ENDPOINT="https://hf-mirror.com"
4
+ export PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True
5
+ #based on fm1500
6
+ torchrun --nnodes 3 --nproc_per_node 8 --node_rank=${NODE_RANK} --master_addr=10.156.32.11 --master_port=14431 \
7
+ fastvideo/distill_i2v_cog720-49.py \
8
+ --seed 42 \
9
+ --pretrained_model_name_or_path /DATA/bvac/personal/opensora/zhipu/pretrained/danzhen-i2v-97f-720P-16fps/danzhen-i2v-97f-720P-16fps-1600steps_bs24-fm6000 \
10
+ --dit_model_name_or_path /DATA/bvac/personal/opensora/zhipu/pretrained/danzhen-i2v-97f-720P-16fps/danzhen-i2v-97f-720P-16fps-1600steps_bs24-fm6000 \
11
+ --model_type "cog" \
12
+ --cache_dir /data/docker/data/video14w/.cache \
13
+ --data_json_path /data/docker/data/video14w/outputs/videos2caption.json \
14
+ --validation_prompt_dir /data/docker/data/video14w/outputs/validation \
15
+ --gradient_checkpointing \
16
+ --train_batch_size=1 \
17
+ --num_latent_t 24 \
18
+ --sp_size 1 \
19
+ --train_sp_batch_size 1 \
20
+ --dataloader_num_workers 4 \
21
+ --gradient_accumulation_steps=1 \
22
+ --max_train_steps=20000 \
23
+ --learning_rate=3e-6 \
24
+ --mixed_precision="bf16" \
25
+ --checkpointing_steps=250 \
26
+ --validation_steps 15000000 \
27
+ --validation_sampling_steps "2,4,8" \
28
+ --checkpoints_total_limit 3 \
29
+ --allow_tf32 \
30
+ --ema_start_step 0 \
31
+ --cfg 0.0 \
32
+ --log_validation \
33
+ --output_dir=outputs-cog_i2v_5B_down_vae_eryu49_3gpus_fix_text_rot_fvfm6k_distill \
34
+ --tracker_project_name cog_i2v_5B_down_vae_eryu49_3gpus_fix_text_rot_fvfm6k_distill \
35
+ --num_frames 49 \
36
+ --shift 17 \
37
+ --validation_guidance_scale "1.0" \
38
+ --num_euler_timesteps 50 \
39
+ --multi_phased_distill_schedule "4000-1" \
40
+ --not_apply_cfg_solver
scripts/distill/distill_cog720-49mix246adv.sh ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ export WANDB_BASE_URL="https://api.wandb.ai"
2
+ export WANDB_MODE=online
3
+ export HF_ENDPOINT="https://hf-mirror.com"
4
+ export PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True
5
+ #based on fm1500
6
+ torchrun --nnodes 3 --nproc_per_node 8 --node_rank=${NODE_RANK} --master_addr=10.156.32.11 --master_port=14431 \
7
+ fastvideo/distill_adv-cog720-49.py \
8
+ --seed 42 \
9
+ --pretrained_model_name_or_path /DATA/bvac/personal/opensora/zhipu/pretrained/danzhen-i2v-97f-720P-16fps/danzhen-i2v-97f-720P-16fps-fm246mix \
10
+ --dit_model_name_or_path /DATA/bvac/personal/opensora/zhipu/pretrained/danzhen-i2v-97f-720P-16fps/danzhen-i2v-97f-720P-16fps-fm246mix \
11
+ --model_type "cog" \
12
+ --cache_dir /data/docker/data/video14w/.cache \
13
+ --data_json_path /data/docker/data/video14w/outputs/videos2caption.json \
14
+ --validation_prompt_dir /data/docker/data/video14w/outputs/validation \
15
+ --gradient_checkpointing \
16
+ --train_batch_size=1 \
17
+ --num_latent_t 24 \
18
+ --sp_size 1 \
19
+ --train_sp_batch_size 1 \
20
+ --dataloader_num_workers 4 \
21
+ --gradient_accumulation_steps=1 \
22
+ --max_train_steps=20000 \
23
+ --learning_rate=1e-6 \
24
+ --mixed_precision="bf16" \
25
+ --checkpointing_steps=64 \
26
+ --validation_steps 15000000 \
27
+ --validation_sampling_steps "2,4,8" \
28
+ --checkpoints_total_limit 3 \
29
+ --allow_tf32 \
30
+ --ema_start_step 0 \
31
+ --cfg 0.0 \
32
+ --log_validation \
33
+ --output_dir=outputs-cog_i2v_5B_down_vae_eryu49_3gpus_fix_text_rot_fvfm_mix246_distill1e6adv \
34
+ --tracker_project_name cog_i2v_5B_down_vae_eryu49_3gpus_fix_text_rot_fvfm_mix246_distill1e6adv \
35
+ --num_frames 49 \
36
+ --shift 17 \
37
+ --validation_guidance_scale "1.0" \
38
+ --num_euler_timesteps 50 \
39
+ --multi_phased_distill_schedule "4000-1" \
40
+ --not_apply_cfg_solver
scripts/distill/distill_cog720-49mix26.sh ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ export WANDB_BASE_URL="https://api.wandb.ai"
2
+ export WANDB_MODE=online
3
+ export HF_ENDPOINT="https://hf-mirror.com"
4
+ export PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True
5
+
6
+
7
+ torchrun --nnodes 5 --nproc_per_node 8 --node_rank=${NODE_RANK} --master_addr=10.156.32.11 --master_port=14431 \
8
+ fastvideo/distill_i2v_cog720-4133-nonegrid.py \
9
+ --seed 42 \
10
+ --pretrained_model_name_or_path /DATA/bvac/personal/opensora/zhipu/pretrained/mix26 \
11
+ --dit_model_name_or_path /DATA/bvac/personal/opensora/zhipu/pretrained/mix26 \
12
+ --model_type "cog" \
13
+ --cache_dir /data/docker/data/video14w/.cache \
14
+ --data_json_path2 /DATA/bvac/personal/fastvideo/make-data/all33-41-49/videos2caption41.json \
15
+ --data_json_path3 /DATA/bvac/personal/fastvideo/make-data/all33-41-49/videos2caption33.json \
16
+ --validation_prompt_dir /data/docker/data/video14w/outputs/validation \
17
+ --gradient_checkpointing \
18
+ --train_batch_size=1 \
19
+ --num_latent_t 24 \
20
+ --sp_size 1 \
21
+ --train_sp_batch_size 1 \
22
+ --dataloader_num_workers 4 \
23
+ --gradient_accumulation_steps=1 \
24
+ --max_train_steps=20000 \
25
+ --learning_rate=1.5e-6 \
26
+ --mixed_precision="bf16" \
27
+ --checkpointing_steps=64 \
28
+ --validation_steps 15000000 \
29
+ --validation_sampling_steps "2,4,8" \
30
+ --checkpoints_total_limit 3 \
31
+ --allow_tf32 \
32
+ --ema_start_step 0 \
33
+ --cfg 0.0 \
34
+ --log_validation \
35
+ --output_dir=outputs-cog_i2sv_5B_down_vae_eryu4133_5gpus_fix_text_rot_fvfm_mix26_distill1d5e6 \
36
+ --tracker_project_name cog_i2v_5B_down_vae_eryu4133_5gpus_fix_text_rot_fvfm_mix26_distill1d5e6 \
37
+ --num_frames 41 \
38
+ --shift 17 \
39
+ --validation_guidance_scale "1.0" \
40
+ --num_euler_timesteps 50 \
41
+ --multi_phased_distill_schedule "4000-1" \
42
+ --not_apply_cfg_solver
scripts/distill/distill_cog720-49mix26b.sh ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ export WANDB_BASE_URL="https://api.wandb.ai"
2
+ export WANDB_MODE=online
3
+ export HF_ENDPOINT="https://hf-mirror.com"
4
+ export PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True
5
+
6
+
7
+ torchrun --nnodes 4 --nproc_per_node 8 --node_rank=${NODE_RANK} --master_addr=10.156.32.11 --master_port=14431 \
8
+ fastvideo/distill_i2v_cog720-4133-nonegrid.py \
9
+ --seed 42 \
10
+ --pretrained_model_name_or_path /DATA/bvac/personal/opensora/zhipu/pretrained/cog_i2sv_5B_down_vae_eryu4133_5gpus_fix_text_rot_fvfm_mix26_distill1d5e6/mix5221 \
11
+ --dit_model_name_or_path /DATA/bvac/personal/opensora/zhipu/pretrained/cog_i2sv_5B_down_vae_eryu4133_5gpus_fix_text_rot_fvfm_mix26_distill1d5e6/mix5221 \
12
+ --model_type "cog" \
13
+ --cache_dir /data/docker/data/video14w/.cache \
14
+ --data_json_path2 /DATA/bvac/personal/fastvideo/make-data/all33-41-49/videos2caption41.json \
15
+ --data_json_path3 /DATA/bvac/personal/fastvideo/make-data/all33-41-49/videos2caption33.json \
16
+ --validation_prompt_dir /data/docker/data/video14w/outputs/validation \
17
+ --gradient_checkpointing \
18
+ --train_batch_size=1 \
19
+ --num_latent_t 24 \
20
+ --sp_size 1 \
21
+ --train_sp_batch_size 1 \
22
+ --dataloader_num_workers 4 \
23
+ --gradient_accumulation_steps=1 \
24
+ --max_train_steps=20000 \
25
+ --learning_rate=1e-6 \
26
+ --mixed_precision="bf16" \
27
+ --checkpointing_steps=64 \
28
+ --validation_steps 15000000 \
29
+ --validation_sampling_steps "2,4,8" \
30
+ --checkpoints_total_limit 3 \
31
+ --allow_tf32 \
32
+ --ema_start_step 0 \
33
+ --cfg 0.0 \
34
+ --log_validation \
35
+ --output_dir=outputs-cog_i2sv_5B_down_vae_eryu4133_4gpus_fix_text_rot_fvfm_mix26_distill1e6b \
36
+ --tracker_project_name cog_i2v_5B_down_vae_eryu4133_4gpus_fix_text_rot_fvfm_mix26_distill1e6b \
37
+ --num_frames 41 \
38
+ --shift 17 \
39
+ --validation_guidance_scale "1.0" \
40
+ --num_euler_timesteps 50 \
41
+ --multi_phased_distill_schedule "4000-1" \
42
+ --not_apply_cfg_solver
scripts/distill/distill_hunyuan.sh ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ export WANDB_BASE_URL="https://api.wandb.ai"
2
+ export WANDB_MODE=online
3
+
4
+ DATA_DIR=./data
5
+
6
+ torchrun --nnodes 1 --nproc_per_node 8\
7
+ fastvideo/distill.py\
8
+ --seed 42\
9
+ --pretrained_model_name_or_path $DATA_DIR/hunyuan\
10
+ --dit_model_name_or_path $DATA_DIR/hunyuan/hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states.pt\
11
+ --model_type "hunyuan" \
12
+ --cache_dir "$DATA_DIR/.cache"\
13
+ --data_json_path "$DATA_DIR/Hunyuan-30K-Distill-Data/videos2caption.json"\
14
+ --validation_prompt_dir "$DATA_DIR/Hunyuan-Distill-Data/validation"\
15
+ --gradient_checkpointing\
16
+ --train_batch_size=1\
17
+ --num_latent_t 24\
18
+ --sp_size 1\
19
+ --train_sp_batch_size 1\
20
+ --dataloader_num_workers 4\
21
+ --gradient_accumulation_steps=1\
22
+ --max_train_steps=2000\
23
+ --learning_rate=1e-6\
24
+ --mixed_precision="bf16"\
25
+ --checkpointing_steps=64\
26
+ --validation_steps 64\
27
+ --validation_sampling_steps "2,4,8" \
28
+ --checkpoints_total_limit 3\
29
+ --allow_tf32\
30
+ --ema_start_step 0\
31
+ --cfg 0.0\
32
+ --log_validation\
33
+ --output_dir="$DATA_DIR/outputs/hy_phase1_shift17_bs_32"\
34
+ --tracker_project_name Hunyuan_Distill \
35
+ --num_frames 93 \
36
+ --shift 17 \
37
+ --validation_guidance_scale "1.0" \
38
+ --num_euler_timesteps 50 \
39
+ --multi_phased_distill_schedule "4000-1" \
40
+ --not_apply_cfg_solver
scripts/distill/distill_mochi.sh ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ export WANDB_BASE_URL="https://api.wandb.ai"
2
+ export WANDB_MODE=online
3
+
4
+ torchrun --nnodes 1 --nproc_per_node 4 \
5
+ fastvideo/distill.py \
6
+ --seed 42 \
7
+ --pretrained_model_name_or_path data/mochi \
8
+ --model_type "mochi" \
9
+ --cache_dir data/.cache \
10
+ --data_json_path data/Merge-30k-Data/video2caption.json \
11
+ --validation_prompt_dir data/Image-Vid-Finetune-Mochi/validation \
12
+ --gradient_checkpointing \
13
+ --train_batch_size=1 \
14
+ --num_latent_t 28 \
15
+ --sp_size 4 \
16
+ --train_sp_batch_size 2 \
17
+ --dataloader_num_workers 4 \
18
+ --gradient_accumulation_steps=1 \
19
+ --max_train_steps=4000 \
20
+ --learning_rate=1e-6 \
21
+ --mixed_precision=bf16 \
22
+ --checkpointing_steps=64 \
23
+ --validation_steps 1 \
24
+ --validation_sampling_steps 8 \
25
+ --checkpoints_total_limit 3 \
26
+ --allow_tf32 \
27
+ --ema_start_step 0 \
28
+ --cfg 0.0 \
29
+ --log_validation \
30
+ --output_dir="data/outputs/lq_euler_50_thres0.1_lrg_0.75_phase1_lr1e-6_repro" \
31
+ --tracker_project_name PCM \
32
+ --num_frames 163 \
33
+ --scheduler_type pcm_linear_quadratic \
34
+ --validation_guidance_scale 0.5,1.5,2.5 \
35
+ --num_euler_timesteps 50 \
36
+ --linear_quadratic_threshold 0.1 \
37
+ --linear_range 0.75 \
38
+ --multi_phased_distill_schedule 4000-1
scripts/finetune/finetune_wan.sh ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ export WANDB_BASE_URL="https://api.wandb.ai"
2
+ #export WANDB_MODE=online
3
+ export WANDB_MODE=offline
4
+ export WANDB_API_KEY=xxx
5
+ export HF_ENDPOINT="https://hf-mirror.com"
6
+ export PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True #
7
+ export TORCH_NCCL_TRACE_BUFFER_SIZE=1048576 # 1MB
8
+ export TORCH_NCCL_ASYNC_ERROR_HANDLING=1
9
+ export CUBLAS_WORKSPACE_CONFIG=:4096:8
10
+
11
+ torchrun --nnodes 1 --nproc_per_node 8 --node_rank=0 --master_addr=127.0.0.1 --master_port=24431 \
12
+ fastvideo/train.py \
13
+ --seed 142 \
14
+ --pretrained_model_name_or_path /DATA/bvac/personal/wan21/Wan2.1-I2V-14B-480P \
15
+ --model_type "wan" \
16
+ --data_json_path test_data/data.json \
17
+ --gradient_checkpointing \
18
+ --train_batch_size=1 \
19
+ --num_latent_t 240 \
20
+ --sp_size 8 \
21
+ --train_sp_batch_size 1 \
22
+ --dataloader_num_workers 4 \
23
+ --gradient_accumulation_steps=1 \
24
+ --max_train_steps=20000 \
25
+ --learning_rate=1e-5 \
26
+ --mixed_precision=bf16 \
27
+ --checkpointing_steps=400 \
28
+ --validation_steps 20000 \
29
+ --validation_sampling_steps 64 \
30
+ --checkpoints_total_limit 3 \
31
+ --allow_tf32 \
32
+ --ema_start_step 0 \
33
+ --cfg 0.0 \
34
+ --ema_decay 0.999 \
35
+ --log_validation \
36
+ --output_dir=outputs-sp8 \
37
+ --tracker_project_name sp8 \
38
+ --validation_guidance_scale "1.0" \
39
+ --group_frame
scripts/huggingface/download_hf.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from huggingface_hub import snapshot_download, hf_hub_download
2
+ import argparse
3
+
4
+ # set args for repo_id, local_dir, repo_type,
5
+
6
+ if __name__ == "__main__":
7
+ parser = argparse.ArgumentParser(
8
+ description="Download a dataset or model from the Hugging Face Hub"
9
+ )
10
+ parser.add_argument(
11
+ "--repo_id", type=str, help="The ID of the repository to download"
12
+ )
13
+ parser.add_argument(
14
+ "--local_dir",
15
+ type=str,
16
+ help="The local directory to download the repository to",
17
+ )
18
+ parser.add_argument(
19
+ "--repo_type",
20
+ type=str,
21
+ help="The type of repository to download (dataset or model)",
22
+ )
23
+ parser.add_argument("--file_name", type=str, help="The file name to download")
24
+ args = parser.parse_args()
25
+ if args.file_name:
26
+ hf_hub_download(
27
+ repo_id=args.repo_id,
28
+ filename=args.file_name,
29
+ repo_type=args.repo_type,
30
+ local_dir=args.local_dir,
31
+ )
32
+ else:
33
+ snapshot_download(
34
+ repo_id=args.repo_id,
35
+ local_dir=args.local_dir,
36
+ repo_type=args.repo_type,
37
+ local_dir_use_symlinks=False,
38
+ resume_download=True,
39
+ )
scripts/huggingface/upload_hf.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ from huggingface_hub import HfApi
2
+
3
+ api = HfApi()
4
+
5
+ api.upload_folder(
6
+ folder_path="data/Black-Myth-Taylor-Src",
7
+ repo_id="FastVideo/Image-Vid-Finetune-Src",
8
+ repo_type="dataset",
9
+ )
scripts/inference/inference_diffusers_hunyuan.sh ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ num_gpus=1
4
+ export MODEL_BASE="data/FastHunyuan-diffusers"
5
+ torchrun --nnodes=1 --nproc_per_node=$num_gpus --master_port 12345 \
6
+ fastvideo/sample/sample_t2v_diffusers_hunyuan.py \
7
+ --height 720 \
8
+ --width 1280 \
9
+ --num_frames 45 \
10
+ --num_inference_steps 6 \
11
+ --guidance_scale 1 \
12
+ --embedded_cfg_scale 6 \
13
+ --flow_shift 17 \
14
+ --flow-reverse \
15
+ --prompt ./assets/prompt.txt \
16
+ --seed 1024 \
17
+ --output_path outputs_video/hunyuan_quant/nf4/ \
18
+ --model_path $MODEL_BASE \
19
+ --quantization "nf4" \
20
+ --cpu_offload
scripts/inference/inference_hunyuan.sh ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ num_gpus=4
4
+ export MODEL_BASE=data/FastHunyuan
5
+ torchrun --nnodes=1 --nproc_per_node=$num_gpus --master_port 29503 \
6
+ fastvideo/sample/sample_t2v_hunyuan.py \
7
+ --height 720 \
8
+ --width 1280 \
9
+ --num_frames 125 \
10
+ --num_inference_steps 6 \
11
+ --guidance_scale 1 \
12
+ --embedded_cfg_scale 6 \
13
+ --flow_shift 17 \
14
+ --flow-reverse \
15
+ --prompt ./assets/prompt.txt \
16
+ --seed 1024 \
17
+ --output_path outputs_video/hunyuan/cfg6/ \
18
+ --model_path $MODEL_BASE \
19
+ --dit-weight ${MODEL_BASE}/hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states.pt
scripts/inference/inference_mochi_sp.sh ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ num_gpus=4
4
+
5
+ torchrun --nnodes=1 --nproc_per_node=$num_gpus --master_port 29503 \
6
+ fastvideo/sample/sample_t2v_mochi.py \
7
+ --model_path data/FastMochi-diffusers \
8
+ --prompt_path "assets/prompt.txt" \
9
+ --num_frames 163 \
10
+ --height 480 \
11
+ --width 848 \
12
+ --num_inference_steps 8 \
13
+ --guidance_scale 1.5 \
14
+ --output_path outputs_video/mochi_sp/ \
15
+ --seed 1024 \
16
+ --scheduler_type "pcm_linear_quadratic" \
17
+ --linear_threshold 0.1 \
18
+ --linear_range 0.75
19
+
scripts/preprocess/preprocess_cog_data.sh ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # export WANDB_MODE="offline"#
2
+ ######test-t2v-5B-wukong
3
+ export HF_ENDPOINT="https://hf-mirror.com"
4
+ GPU_NUM=4 # 2,4,8
5
+ MODEL_PATH="/DATA/bvac/personal/opensora/zhipu/pretrained/hf2b/cache/models--THUDM--CogVideoX-5b/snapshots/8d6ea3f817438460b25595a120f109b88d5fdfad"
6
+ MODEL_TYPE="cog"
7
+ DATA_MERGE_PATH="/DATA/bvac/personal/fastvideo/FastVideo-main/data/Image-Vid-Finetune-Src/merge.txt"
8
+ OUTPUT_DIR="/DATA/bvac/personal/fastvideo/FastVideo-main/data/Image-Vid-Finetune-cog480P-49f8fps"
9
+ VALIDATION_PATH="/DATA/bvac/personal/fastvideo/FastVideo-main/assets/prompt1.txt"
10
+
11
+ torchrun --nproc_per_node=$GPU_NUM \
12
+ fastvideo/data_preprocess/preprocess_vae_latents.py \
13
+ --model_path $MODEL_PATH \
14
+ --data_merge_path $DATA_MERGE_PATH \
15
+ --train_batch_size=1 \
16
+ --max_height=480 \
17
+ --max_width=720 \
18
+ --num_frames=49 \
19
+ --dataloader_num_workers 1 \
20
+ --output_dir=$OUTPUT_DIR \
21
+ --model_type $MODEL_TYPE \
22
+ --train_fps 12
23
+
24
+ torchrun --nproc_per_node=$GPU_NUM \
25
+ fastvideo/data_preprocess/preprocess_text_embeddings.py \
26
+ --model_type $MODEL_TYPE \
27
+ --model_path $MODEL_PATH \
28
+ --output_dir=$OUTPUT_DIR
29
+
30
+ torchrun --nproc_per_node=$GPU_NUM \
31
+ fastvideo/data_preprocess/preprocess_validation_text_embeddings.py \
32
+ --model_type $MODEL_TYPE \
33
+ --model_path $MODEL_PATH \
34
+ --output_dir=$OUTPUT_DIR \
35
+ --validation_prompt_txt $VALIDATION_PATH
scripts/preprocess/preprocess_hunyuan_data.sh ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # export WANDB_MODE="offline"
2
+ GPU_NUM=1 # 2,4,8
3
+ MODEL_PATH="data/hunyuan"
4
+ MODEL_TYPE="hunyuan"
5
+ DATA_MERGE_PATH="data/Image-Vid-Finetune-Src/merge.txt"
6
+ OUTPUT_DIR="data/Image-Vid-Finetune-HunYuan"
7
+ VALIDATION_PATH="assets/prompt.txt"
8
+
9
+ torchrun --nproc_per_node=$GPU_NUM \
10
+ fastvideo/data_preprocess/preprocess_vae_latents.py \
11
+ --model_path $MODEL_PATH \
12
+ --data_merge_path $DATA_MERGE_PATH \
13
+ --train_batch_size=1 \
14
+ --max_height=480 \
15
+ --max_width=848 \
16
+ --num_frames=93 \
17
+ --dataloader_num_workers 1 \
18
+ --output_dir=$OUTPUT_DIR \
19
+ --model_type $MODEL_TYPE \
20
+ --train_fps 24
21
+
22
+ torchrun --nproc_per_node=$GPU_NUM \
23
+ fastvideo/data_preprocess/preprocess_text_embeddings.py \
24
+ --model_type $MODEL_TYPE \
25
+ --model_path $MODEL_PATH \
26
+ --output_dir=$OUTPUT_DIR
27
+
28
+ torchrun --nproc_per_node=1 \
29
+ fastvideo/data_preprocess/preprocess_validation_text_embeddings.py \
30
+ --model_type $MODEL_TYPE \
31
+ --model_path $MODEL_PATH \
32
+ --output_dir=$OUTPUT_DIR \
33
+ --validation_prompt_txt $VALIDATION_PATH
scripts/preprocess/preprocess_mochi_data.sh ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # export WANDB_MODE="offline"
2
+ GPU_NUM=1 # 2,4,8
3
+ MODEL_PATH="data/FastMochi-diffusers"
4
+ MODEL_TYPE="mochi"
5
+ DATA_MERGE_PATH="data/Image-Vid-Finetune-Src/merge.txt"
6
+ OUTPUT_DIR="data/Image-Vid-Finetune-Mochi"
7
+ VALIDATION_PATH="assets/prompt.txt"
8
+
9
+ torchrun --nproc_per_node=$GPU_NUM \
10
+ fastvideo/data_preprocess/preprocess_vae_latents.py \
11
+ --model_path $MODEL_PATH \
12
+ --data_merge_path $DATA_MERGE_PATH \
13
+ --train_batch_size=1 \
14
+ --max_height=480 \
15
+ --max_width=848 \
16
+ --num_frames=93 \
17
+ --dataloader_num_workers 1 \
18
+ --output_dir=$OUTPUT_DIR \
19
+ --model_type $MODEL_TYPE \
20
+ --train_fps 24
21
+
22
+ torchrun --nproc_per_node=$GPU_NUM \
23
+ fastvideo/data_preprocess/preprocess_text_embeddings.py \
24
+ --model_type $MODEL_TYPE \
25
+ --model_path $MODEL_PATH \
26
+ --output_dir=$OUTPUT_DIR
27
+
28
+ torchrun --nproc_per_node=1 \
29
+ fastvideo/data_preprocess/preprocess_validation_text_embeddings.py \
30
+ --model_type $MODEL_TYPE \
31
+ --model_path $MODEL_PATH \
32
+ --output_dir=$OUTPUT_DIR \
33
+ --validation_prompt_txt $VALIDATION_PATH
wan/__init__.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ from . import configs, distributed, modules
2
+ from .image2video import WanI2V
3
+ from .text2video import WanT2V
wan/configs/__init__.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
2
+ import copy
3
+ import os
4
+
5
+ os.environ['TOKENIZERS_PARALLELISM'] = 'false'
6
+
7
+ from .wan_i2v_14B import i2v_14B
8
+ from .wan_t2v_1_3B import t2v_1_3B
9
+ from .wan_t2v_14B import t2v_14B
10
+
11
+ # the config of t2i_14B is the same as t2v_14B
12
+ t2i_14B = copy.deepcopy(t2v_14B)
13
+ t2i_14B.__name__ = 'Config: Wan T2I 14B'
14
+
15
+ WAN_CONFIGS = {
16
+ 't2v-14B': t2v_14B,
17
+ 't2v-1.3B': t2v_1_3B,
18
+ 'i2v-14B': i2v_14B,
19
+ 't2i-14B': t2i_14B,
20
+ }
21
+
22
+ SIZE_CONFIGS = {
23
+ '720*1280': (720, 1280),
24
+ '1280*720': (1280, 720),
25
+ '480*832': (480, 832),
26
+ '832*480': (832, 480),
27
+ '1024*1024': (1024, 1024),
28
+ '960*544': (960, 544),
29
+ }
30
+
31
+ MAX_AREA_CONFIGS = {
32
+ '720*1280': 720 * 1280,
33
+ '1280*720': 1280 * 720,
34
+ '480*832': 480 * 832,
35
+ '832*480': 832 * 480,
36
+ '960*544': 960 * 544,
37
+ }
38
+
39
+ SUPPORTED_SIZES = {
40
+ 't2v-14B': ('720*1280', '1280*720', '480*832', '832*480'),
41
+ 't2v-1.3B': ('480*832', '832*480'),
42
+ 'i2v-14B': ('720*1280', '1280*720', '480*832', '832*480', '960*544'),
43
+ 't2i-14B': tuple(SIZE_CONFIGS.keys()),
44
+ }
wan/configs/shared_config.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
2
+ import torch
3
+ from easydict import EasyDict
4
+
5
+ #------------------------ Wan shared config ------------------------#
6
+ wan_shared_cfg = EasyDict()
7
+
8
+ # t5
9
+ wan_shared_cfg.t5_model = 'umt5_xxl'
10
+ wan_shared_cfg.t5_dtype = torch.bfloat16
11
+ wan_shared_cfg.text_len = 512
12
+
13
+ # transformer
14
+ wan_shared_cfg.param_dtype = torch.bfloat16
15
+
16
+ # inference
17
+ wan_shared_cfg.num_train_timesteps = 1000
18
+ wan_shared_cfg.sample_fps = 16
19
+ wan_shared_cfg.sample_neg_prompt = '色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走'
wan/configs/wan_i2v_14B.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
2
+ import torch
3
+ from easydict import EasyDict
4
+
5
+ from .shared_config import wan_shared_cfg
6
+
7
+ #------------------------ Wan I2V 14B ------------------------#
8
+
9
+ i2v_14B = EasyDict(__name__='Config: Wan I2V 14B')
10
+ i2v_14B.update(wan_shared_cfg)
11
+
12
+ i2v_14B.t5_checkpoint = 'models_t5_umt5-xxl-enc-bf16.pth'
13
+ i2v_14B.t5_tokenizer = 'google/umt5-xxl'
14
+
15
+ # clip
16
+ i2v_14B.clip_model = 'clip_xlm_roberta_vit_h_14'
17
+ i2v_14B.clip_dtype = torch.float16
18
+ i2v_14B.clip_checkpoint = 'models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth'
19
+ i2v_14B.clip_tokenizer = 'xlm-roberta-large'
20
+
21
+ # vae
22
+ i2v_14B.vae_checkpoint = 'Wan2.1_VAE.pth'
23
+ i2v_14B.vae_stride = (4, 8, 8)
24
+
25
+ # transformer
26
+ i2v_14B.patch_size = (1, 2, 2)
27
+ i2v_14B.dim = 5120
28
+ i2v_14B.ffn_dim = 13824
29
+ i2v_14B.freq_dim = 256
30
+ i2v_14B.num_heads = 40
31
+ i2v_14B.num_layers = 40
32
+ i2v_14B.window_size = (-1, -1)
33
+ i2v_14B.qk_norm = True
34
+ i2v_14B.cross_attn_norm = True
35
+ i2v_14B.eps = 1e-6
wan/configs/wan_t2v_14B.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
2
+ from easydict import EasyDict
3
+
4
+ from .shared_config import wan_shared_cfg
5
+
6
+ #------------------------ Wan T2V 14B ------------------------#
7
+
8
+ t2v_14B = EasyDict(__name__='Config: Wan T2V 14B')
9
+ t2v_14B.update(wan_shared_cfg)
10
+
11
+ # t5
12
+ t2v_14B.t5_checkpoint = 'models_t5_umt5-xxl-enc-bf16.pth'
13
+ t2v_14B.t5_tokenizer = 'google/umt5-xxl'
14
+
15
+ # vae
16
+ t2v_14B.vae_checkpoint = 'Wan2.1_VAE.pth'
17
+ t2v_14B.vae_stride = (4, 8, 8)
18
+
19
+ # transformer
20
+ t2v_14B.patch_size = (1, 2, 2)
21
+ t2v_14B.dim = 5120
22
+ t2v_14B.ffn_dim = 13824
23
+ t2v_14B.freq_dim = 256
24
+ t2v_14B.num_heads = 40
25
+ t2v_14B.num_layers = 40
26
+ t2v_14B.window_size = (-1, -1)
27
+ t2v_14B.qk_norm = True
28
+ t2v_14B.cross_attn_norm = True
29
+ t2v_14B.eps = 1e-6
wan/configs/wan_t2v_1_3B.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
2
+ from easydict import EasyDict
3
+
4
+ from .shared_config import wan_shared_cfg
5
+
6
+ #------------------------ Wan T2V 1.3B ------------------------#
7
+
8
+ t2v_1_3B = EasyDict(__name__='Config: Wan T2V 1.3B')
9
+ t2v_1_3B.update(wan_shared_cfg)
10
+
11
+ # t5
12
+ t2v_1_3B.t5_checkpoint = 'models_t5_umt5-xxl-enc-bf16.pth'
13
+ t2v_1_3B.t5_tokenizer = 'google/umt5-xxl'
14
+
15
+ # vae
16
+ t2v_1_3B.vae_checkpoint = 'Wan2.1_VAE.pth'
17
+ t2v_1_3B.vae_stride = (4, 8, 8)
18
+
19
+ # transformer
20
+ t2v_1_3B.patch_size = (1, 2, 2)
21
+ t2v_1_3B.dim = 1536
22
+ t2v_1_3B.ffn_dim = 8960
23
+ t2v_1_3B.freq_dim = 256
24
+ t2v_1_3B.num_heads = 12
25
+ t2v_1_3B.num_layers = 30
26
+ t2v_1_3B.window_size = (-1, -1)
27
+ t2v_1_3B.qk_norm = True
28
+ t2v_1_3B.cross_attn_norm = True
29
+ t2v_1_3B.eps = 1e-6
wan/distributed/__init__.py ADDED
File without changes
wan/distributed/fsdp.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
2
+ from functools import partial
3
+
4
+ import torch
5
+ from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
6
+ from torch.distributed.fsdp import MixedPrecision, ShardingStrategy
7
+ from torch.distributed.fsdp.wrap import lambda_auto_wrap_policy
8
+
9
+
10
+ def shard_model(
11
+ model,
12
+ device_id,
13
+ param_dtype=torch.bfloat16,
14
+ reduce_dtype=torch.float32,
15
+ buffer_dtype=torch.float32,
16
+ process_group=None,
17
+ sharding_strategy=ShardingStrategy.FULL_SHARD,
18
+ sync_module_states=True,
19
+ ):
20
+ model = FSDP(
21
+ module=model,
22
+ process_group=process_group,
23
+ sharding_strategy=sharding_strategy,
24
+ auto_wrap_policy=partial(
25
+ lambda_auto_wrap_policy, lambda_fn=lambda m: m in model.blocks),
26
+ mixed_precision=MixedPrecision(
27
+ param_dtype=param_dtype,
28
+ reduce_dtype=reduce_dtype,
29
+ buffer_dtype=buffer_dtype),
30
+ device_id=device_id,
31
+ sync_module_states=sync_module_states)
32
+ return model
wan/distributed/xdit_context_parallel.py ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
2
+ import torch
3
+ import torch.cuda.amp as amp
4
+ from xfuser.core.distributed import (get_sequence_parallel_rank,
5
+ get_sequence_parallel_world_size,
6
+ get_sp_group)
7
+ from xfuser.core.long_ctx_attention import xFuserLongContextAttention
8
+
9
+ from ..modules.model import sinusoidal_embedding_1d
10
+
11
+
12
+ def pad_freqs(original_tensor, target_len):
13
+ seq_len, s1, s2 = original_tensor.shape
14
+ pad_size = target_len - seq_len
15
+ padding_tensor = torch.ones(
16
+ pad_size,
17
+ s1,
18
+ s2,
19
+ dtype=original_tensor.dtype,
20
+ device=original_tensor.device)
21
+ padded_tensor = torch.cat([original_tensor, padding_tensor], dim=0)
22
+ return padded_tensor
23
+
24
+
25
+ @amp.autocast(enabled=False)
26
+ def rope_apply(x, grid_sizes, freqs):
27
+ """
28
+ x: [B, L, N, C].
29
+ grid_sizes: [B, 3].
30
+ freqs: [M, C // 2].
31
+ """
32
+ s, n, c = x.size(1), x.size(2), x.size(3) // 2
33
+ # split freqs
34
+ freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)
35
+
36
+ # loop over samples
37
+ output = []
38
+ for i, (f, h, w) in enumerate(grid_sizes.tolist()):
39
+ seq_len = f * h * w
40
+
41
+ # precompute multipliers
42
+ x_i = torch.view_as_complex(x[i, :s].to(torch.float64).reshape(
43
+ s, n, -1, 2))
44
+ freqs_i = torch.cat([
45
+ freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
46
+ freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
47
+ freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1)
48
+ ],
49
+ dim=-1).reshape(seq_len, 1, -1)
50
+
51
+ # apply rotary embedding
52
+ sp_size = get_sequence_parallel_world_size()
53
+ sp_rank = get_sequence_parallel_rank()
54
+ freqs_i = pad_freqs(freqs_i, s * sp_size)
55
+ s_per_rank = s
56
+ freqs_i_rank = freqs_i[(sp_rank * s_per_rank):((sp_rank + 1) *
57
+ s_per_rank), :, :]
58
+ x_i = torch.view_as_real(x_i * freqs_i_rank).flatten(2)
59
+ x_i = torch.cat([x_i, x[i, s:]])
60
+
61
+ # append to collection
62
+ output.append(x_i)
63
+ return torch.stack(output).float()
64
+
65
+
66
+ def usp_dit_forward(
67
+ self,
68
+ x,
69
+ t,
70
+ context,
71
+ seq_len,
72
+ clip_fea=None,
73
+ y=None,
74
+ ):
75
+ """
76
+ x: A list of videos each with shape [C, T, H, W].
77
+ t: [B].
78
+ context: A list of text embeddings each with shape [L, C].
79
+ """
80
+ if self.model_type == 'i2v':
81
+ assert clip_fea is not None and y is not None
82
+ # params
83
+ device = self.patch_embedding.weight.device
84
+ if self.freqs.device != device:
85
+ self.freqs = self.freqs.to(device)
86
+
87
+ if y is not None:
88
+ x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
89
+
90
+ # embeddings
91
+ x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
92
+ grid_sizes = torch.stack(
93
+ [torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
94
+ x = [u.flatten(2).transpose(1, 2) for u in x]
95
+ seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
96
+ assert seq_lens.max() <= seq_len
97
+ x = torch.cat([
98
+ torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], dim=1)
99
+ for u in x
100
+ ])
101
+
102
+ # time embeddings
103
+ with amp.autocast(dtype=torch.float32):
104
+ e = self.time_embedding(
105
+ sinusoidal_embedding_1d(self.freq_dim, t).float())
106
+ e0 = self.time_projection(e).unflatten(1, (6, self.dim))
107
+ assert e.dtype == torch.float32 and e0.dtype == torch.float32
108
+
109
+ # context
110
+ context_lens = None
111
+ context = self.text_embedding(
112
+ torch.stack([
113
+ torch.cat([u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
114
+ for u in context
115
+ ]))
116
+
117
+ if clip_fea is not None:
118
+ context_clip = self.img_emb(clip_fea) # bs x 257 x dim
119
+ context = torch.concat([context_clip, context], dim=1)
120
+
121
+ # arguments
122
+ kwargs = dict(
123
+ e=e0,
124
+ seq_lens=seq_lens,
125
+ grid_sizes=grid_sizes,
126
+ freqs=self.freqs,
127
+ context=context,
128
+ context_lens=context_lens)
129
+
130
+ # Context Parallel
131
+ x = torch.chunk(
132
+ x, get_sequence_parallel_world_size(),
133
+ dim=1)[get_sequence_parallel_rank()]
134
+
135
+ for block in self.blocks:
136
+ x = block(x, **kwargs)
137
+
138
+ # head
139
+ x = self.head(x, e)
140
+
141
+ # Context Parallel
142
+ x = get_sp_group().all_gather(x, dim=1)
143
+
144
+ # unpatchify
145
+ x = self.unpatchify(x, grid_sizes)
146
+ return [u.float() for u in x]
147
+
148
+
149
+ def usp_attn_forward(self,
150
+ x,
151
+ seq_lens,
152
+ grid_sizes,
153
+ freqs,
154
+ dtype=torch.bfloat16):
155
+ b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
156
+ half_dtypes = (torch.float16, torch.bfloat16)
157
+
158
+ def half(x):
159
+ return x if x.dtype in half_dtypes else x.to(dtype)
160
+
161
+ # query, key, value function
162
+ def qkv_fn(x):
163
+ q = self.norm_q(self.q(x)).view(b, s, n, d)
164
+ k = self.norm_k(self.k(x)).view(b, s, n, d)
165
+ v = self.v(x).view(b, s, n, d)
166
+ return q, k, v
167
+
168
+ q, k, v = qkv_fn(x)
169
+ q = rope_apply(q, grid_sizes, freqs)
170
+ k = rope_apply(k, grid_sizes, freqs)
171
+
172
+ # TODO: We should use unpaded q,k,v for attention.
173
+ # k_lens = seq_lens // get_sequence_parallel_world_size()
174
+ # if k_lens is not None:
175
+ # q = torch.cat([u[:l] for u, l in zip(q, k_lens)]).unsqueeze(0)
176
+ # k = torch.cat([u[:l] for u, l in zip(k, k_lens)]).unsqueeze(0)
177
+ # v = torch.cat([u[:l] for u, l in zip(v, k_lens)]).unsqueeze(0)
178
+
179
+ x = xFuserLongContextAttention()(
180
+ None,
181
+ query=half(q),
182
+ key=half(k),
183
+ value=half(v),
184
+ window_size=self.window_size)
185
+
186
+ # TODO: padding after attention.
187
+ # x = torch.cat([x, x.new_zeros(b, s - x.size(1), n, d)], dim=1)
188
+
189
+ # output
190
+ x = x.flatten(2)
191
+ x = self.o(x)
192
+ return x
wan/image2video.py ADDED
@@ -0,0 +1,345 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
2
+ import gc
3
+ import logging
4
+ import math
5
+ import os
6
+ import random
7
+ import sys
8
+ import types
9
+ from contextlib import contextmanager
10
+ from functools import partial
11
+
12
+ import numpy as np
13
+ import torch
14
+ import torch.cuda.amp as amp
15
+ import torch.distributed as dist
16
+ import torchvision.transforms.functional as TF
17
+ from tqdm import tqdm
18
+
19
+ from .distributed.fsdp import shard_model
20
+ from .modules.clip import CLIPModel
21
+ from .modules.model_infer import WanModel
22
+ from .modules.t5 import T5EncoderModel
23
+ from .modules.vae import WanVAE
24
+ from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler,
25
+ get_sampling_sigmas, retrieve_timesteps)
26
+ from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
27
+
28
+
29
+ class WanI2V:
30
+
31
+ def __init__(
32
+ self,
33
+ config,
34
+ checkpoint_dir,
35
+ device_id=0,
36
+ rank=0,
37
+ t5_fsdp=False,
38
+ dit_fsdp=False,
39
+ use_usp=False,
40
+ t5_cpu=False,
41
+ init_on_cpu=True,
42
+ ):
43
+ r"""
44
+ Initializes the image-to-video generation model components.
45
+
46
+ Args:
47
+ config (EasyDict):
48
+ Object containing model parameters initialized from config.py
49
+ checkpoint_dir (`str`):
50
+ Path to directory containing model checkpoints
51
+ device_id (`int`, *optional*, defaults to 0):
52
+ Id of target GPU device
53
+ rank (`int`, *optional*, defaults to 0):
54
+ Process rank for distributed training
55
+ t5_fsdp (`bool`, *optional*, defaults to False):
56
+ Enable FSDP sharding for T5 model
57
+ dit_fsdp (`bool`, *optional*, defaults to False):
58
+ Enable FSDP sharding for DiT model
59
+ use_usp (`bool`, *optional*, defaults to False):
60
+ Enable distribution strategy of USP.
61
+ t5_cpu (`bool`, *optional*, defaults to False):
62
+ Whether to place T5 model on CPU. Only works without t5_fsdp.
63
+ init_on_cpu (`bool`, *optional*, defaults to True):
64
+ Enable initializing Transformer Model on CPU. Only works without FSDP or USP.
65
+ """
66
+ self.device = torch.device(f"cuda:{device_id}")
67
+ self.config = config
68
+ self.rank = rank
69
+ self.use_usp = use_usp
70
+ self.t5_cpu = t5_cpu
71
+
72
+ self.num_train_timesteps = config.num_train_timesteps
73
+ self.param_dtype = config.param_dtype
74
+
75
+ shard_fn = partial(shard_model, device_id=device_id)
76
+ self.text_encoder = T5EncoderModel(
77
+ text_len=config.text_len,
78
+ dtype=config.t5_dtype,
79
+ device=torch.device('cpu'),
80
+ checkpoint_path=os.path.join(checkpoint_dir, config.t5_checkpoint),
81
+ tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
82
+ shard_fn=shard_fn if t5_fsdp else None,
83
+ )
84
+
85
+ self.vae_stride = config.vae_stride
86
+ self.patch_size = config.patch_size
87
+ self.vae = WanVAE(
88
+ vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint),
89
+ device=self.device)
90
+
91
+ self.clip = CLIPModel(
92
+ dtype=config.clip_dtype,
93
+ device=self.device,
94
+ checkpoint_path=os.path.join(checkpoint_dir,
95
+ config.clip_checkpoint),
96
+ tokenizer_path=os.path.join(checkpoint_dir, config.clip_tokenizer))
97
+
98
+ logging.info(f"Creating WanModel from {checkpoint_dir}")
99
+ self.model = WanModel.from_pretrained(checkpoint_dir)
100
+ self.model.eval().requires_grad_(False)
101
+
102
+ if t5_fsdp or dit_fsdp or use_usp:
103
+ init_on_cpu = False
104
+
105
+ if use_usp:
106
+ from xfuser.core.distributed import \
107
+ get_sequence_parallel_world_size
108
+
109
+ from .distributed.xdit_context_parallel import (usp_attn_forward,
110
+ usp_dit_forward)
111
+ for block in self.model.blocks:
112
+ block.self_attn.forward = types.MethodType(
113
+ usp_attn_forward, block.self_attn)
114
+ self.model.forward = types.MethodType(usp_dit_forward, self.model)
115
+ self.sp_size = get_sequence_parallel_world_size()
116
+ else:
117
+ self.sp_size = 1
118
+
119
+ if dist.is_initialized():
120
+ dist.barrier()
121
+ if dit_fsdp:
122
+ self.model = shard_fn(self.model)
123
+ else:
124
+ if not init_on_cpu:
125
+ self.model=self.model.to(self.device)
126
+
127
+ self.sample_neg_prompt = config.sample_neg_prompt
128
+
129
+ def generate(self,
130
+ input_prompt,
131
+ img,
132
+ max_area=720 * 1280,
133
+ frame_num=81,
134
+ shift=5.0,
135
+ sample_solver='unipc',
136
+ sampling_steps=40,
137
+ guide_scale=5.0,
138
+ n_prompt="",
139
+ seed=-1,
140
+ offload_model=True):
141
+ r"""
142
+ Generates video frames from input image and text prompt using diffusion process.
143
+
144
+ Args:
145
+ input_prompt (`str`):
146
+ Text prompt for content generation.
147
+ img (PIL.Image.Image):
148
+ Input image tensor. Shape: [3, H, W]
149
+ max_area (`int`, *optional*, defaults to 720*1280):
150
+ Maximum pixel area for latent space calculation. Controls video resolution scaling
151
+ frame_num (`int`, *optional*, defaults to 81):
152
+ How many frames to sample from a video. The number should be 4n+1
153
+ shift (`float`, *optional*, defaults to 5.0):
154
+ Noise schedule shift parameter. Affects temporal dynamics
155
+ [NOTE]: If you want to generate a 480p video, it is recommended to set the shift value to 3.0.
156
+ sample_solver (`str`, *optional*, defaults to 'unipc'):
157
+ Solver used to sample the video.
158
+ sampling_steps (`int`, *optional*, defaults to 40):
159
+ Number of diffusion sampling steps. Higher values improve quality but slow generation
160
+ guide_scale (`float`, *optional*, defaults 5.0):
161
+ Classifier-free guidance scale. Controls prompt adherence vs. creativity
162
+ n_prompt (`str`, *optional*, defaults to ""):
163
+ Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
164
+ seed (`int`, *optional*, defaults to -1):
165
+ Random seed for noise generation. If -1, use random seed
166
+ offload_model (`bool`, *optional*, defaults to True):
167
+ If True, offloads models to CPU during generation to save VRAM
168
+
169
+ Returns:
170
+ torch.Tensor:
171
+ Generated video frames tensor. Dimensions: (C, N H, W) where:
172
+ - C: Color channels (3 for RGB)
173
+ - N: Number of frames (81)
174
+ - H: Frame height (from max_area)
175
+ - W: Frame width from max_area)
176
+ """
177
+ img = TF.to_tensor(img).sub_(0.5).div_(0.5).to(self.device)
178
+
179
+ F = frame_num
180
+ h, w = img.shape[1:]
181
+ aspect_ratio = h / w
182
+ lat_h = round(
183
+ np.sqrt(max_area * aspect_ratio) // self.vae_stride[1] //
184
+ self.patch_size[1] * self.patch_size[1])
185
+ lat_w = round(
186
+ np.sqrt(max_area / aspect_ratio) // self.vae_stride[2] //
187
+ self.patch_size[2] * self.patch_size[2])
188
+ h = lat_h * self.vae_stride[1]
189
+ w = lat_w * self.vae_stride[2]
190
+
191
+ max_seq_len = ((F - 1) // self.vae_stride[0] + 1) * lat_h * lat_w // (
192
+ self.patch_size[1] * self.patch_size[2])
193
+ max_seq_len = int(math.ceil(max_seq_len / self.sp_size)) * self.sp_size
194
+
195
+ seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
196
+ seed_g = torch.Generator(device=self.device)
197
+ seed_g.manual_seed(seed)
198
+ noise = torch.randn(
199
+ 16,
200
+ F//4+1,
201
+ lat_h,
202
+ lat_w,
203
+ dtype=torch.float32,
204
+ generator=seed_g,
205
+ device=self.device)
206
+
207
+ msk = torch.ones(1, F, lat_h, lat_w, device=self.device)
208
+ msk[:, 1:] = 0
209
+ msk = torch.concat([
210
+ torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]
211
+ ],dim=1)
212
+ msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w)
213
+ msk = msk.transpose(1, 2)[0]
214
+
215
+ if n_prompt == "":
216
+ n_prompt = self.sample_neg_prompt
217
+
218
+ # preprocess
219
+ if not self.t5_cpu:
220
+ self.text_encoder.model=self.text_encoder.model.to(self.device)
221
+ context = self.text_encoder([input_prompt], self.device)
222
+ context_null = self.text_encoder([n_prompt], self.device)
223
+ if offload_model:
224
+ self.text_encoder.model=self.text_encoder.model.cpu()
225
+ else:
226
+ context = self.text_encoder([input_prompt], torch.device('cpu'))
227
+ context_null = self.text_encoder([n_prompt], torch.device('cpu'))
228
+ context = [t.to(self.device) for t in context]
229
+ context_null = [t.to(self.device) for t in context_null]
230
+
231
+ self.clip.model=self.clip.model.to(self.device)
232
+ clip_context = self.clip.visual([img[:, None, :, :]])
233
+ if offload_model:
234
+ self.clip.model=self.clip.model.cpu()
235
+ torch.cuda.empty_cache()
236
+ y = self.vae.encode([
237
+ torch.concat([
238
+ torch.nn.functional.interpolate(
239
+ img[None].cpu(), size=(h, w), mode='bicubic').transpose(
240
+ 0, 1),
241
+ # torch.zeros(3, 80, h, w)
242
+ torch.zeros(3, 48, h, w)
243
+ ],dim=1).to(self.device)
244
+ ])[0]
245
+ y = torch.concat([msk, y])
246
+
247
+ @contextmanager
248
+ def noop_no_sync():
249
+ yield
250
+
251
+ no_sync = getattr(self.model, 'no_sync', noop_no_sync)
252
+
253
+ # evaluation mode
254
+ with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync():
255
+
256
+ if sample_solver == 'unipc':
257
+ sample_scheduler = FlowUniPCMultistepScheduler(
258
+ num_train_timesteps=self.num_train_timesteps,
259
+ shift=1,
260
+ use_dynamic_shifting=False)
261
+ sample_scheduler.set_timesteps(
262
+ sampling_steps, device=self.device, shift=shift)
263
+ timesteps = sample_scheduler.timesteps
264
+ elif sample_solver == 'dpm++':
265
+ sample_scheduler = FlowDPMSolverMultistepScheduler(
266
+ num_train_timesteps=self.num_train_timesteps,
267
+ shift=1,
268
+ use_dynamic_shifting=False)
269
+ sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
270
+ timesteps, _ = retrieve_timesteps(
271
+ sample_scheduler,
272
+ device=self.device,
273
+ sigmas=sampling_sigmas)
274
+ else:
275
+ raise NotImplementedError("Unsupported solver.")
276
+
277
+ # sample videos
278
+ latent = noise
279
+
280
+ arg_c = {
281
+ 'context': [context[0]],
282
+ 'clip_fea': clip_context,
283
+ 'seq_len': max_seq_len,
284
+ 'y': [y],
285
+ }
286
+
287
+ arg_null = {
288
+ 'context': context_null,
289
+ 'clip_fea': clip_context,
290
+ 'seq_len': max_seq_len,
291
+ 'y': [y],
292
+ }
293
+
294
+ if offload_model:
295
+ torch.cuda.empty_cache()
296
+
297
+ self.model=self.model.to(self.device)
298
+ for _, t in enumerate(tqdm(timesteps)):
299
+ latent_model_input = [latent.to(self.device)]
300
+ timestep = [t]
301
+
302
+ timestep = torch.stack(timestep).to(self.device)
303
+ # print(timestep)
304
+ noise_pred_cond = self.model(latent_model_input, t=timestep, **arg_c)[0].to(torch.device('cpu') if offload_model else self.device)
305
+ # noise_pred_cond = latent_model_input[0]
306
+ if offload_model:
307
+ torch.cuda.empty_cache()
308
+ noise_pred_uncond = self.model(latent_model_input, t=timestep, **arg_null)[0].to(torch.device('cpu') if offload_model else self.device)
309
+
310
+ # noise_pred_uncond = latent_model_input[0]
311
+ if offload_model:
312
+ torch.cuda.empty_cache()
313
+ noise_pred = noise_pred_uncond + guide_scale * (
314
+ noise_pred_cond - noise_pred_uncond)
315
+
316
+ latent = latent.to(
317
+ torch.device('cpu') if offload_model else self.device)
318
+
319
+ temp_x0 = sample_scheduler.step(
320
+ noise_pred.unsqueeze(0),
321
+ t,
322
+ latent.unsqueeze(0),
323
+ return_dict=False,
324
+ generator=seed_g)[0]
325
+ latent = temp_x0.squeeze(0)
326
+
327
+ x0 = [latent.to(self.device)]
328
+ del latent_model_input, timestep
329
+
330
+ if offload_model:
331
+ self.model=self.model.cpu()
332
+ torch.cuda.empty_cache()
333
+
334
+ if self.rank == 0:
335
+ videos = self.vae.decode(x0)
336
+
337
+ del noise, latent
338
+ del sample_scheduler
339
+ if offload_model:
340
+ gc.collect()
341
+ torch.cuda.synchronize()
342
+ if dist.is_initialized():
343
+ dist.barrier()
344
+
345
+ return videos[0] if self.rank == 0 else None
wan/image2video_if_oss.py ADDED
@@ -0,0 +1,380 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
2
+ import sys
3
+ sys.path.append('../OSS')
4
+ from OSS.OSS import search_OSS_video, infer_OSS
5
+ from OSS.model_wrap import _WrappedModel_Wan
6
+ import gc
7
+ import logging
8
+ import math
9
+ import os
10
+ import random
11
+ import sys
12
+ import types
13
+ from contextlib import contextmanager
14
+ from functools import partial
15
+
16
+ import numpy as np
17
+ import torch
18
+ import torch.cuda.amp as amp
19
+ import torch.distributed as dist
20
+ import torchvision.transforms.functional as TF
21
+ from tqdm import tqdm
22
+
23
+ from .distributed.fsdp import shard_model
24
+ from .modules.clip import CLIPModel
25
+ from .modules.model_infer import WanModel
26
+ from .modules.t5 import T5EncoderModel
27
+ from .modules.vae import WanVAE
28
+ from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler,
29
+ get_sampling_sigmas, retrieve_timesteps)
30
+ from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
31
+
32
+
33
+ class WanI2V:
34
+
35
+ def __init__(
36
+ self,
37
+ config,
38
+ checkpoint_dir,
39
+ device_id=0,
40
+ rank=0,
41
+ t5_fsdp=False,
42
+ dit_fsdp=False,
43
+ use_usp=False,
44
+ t5_cpu=False,
45
+ init_on_cpu=True,
46
+ ):
47
+ r"""
48
+ Initializes the image-to-video generation model components.
49
+
50
+ Args:
51
+ config (EasyDict):
52
+ Object containing model parameters initialized from config.py
53
+ checkpoint_dir (`str`):
54
+ Path to directory containing model checkpoints
55
+ device_id (`int`, *optional*, defaults to 0):
56
+ Id of target GPU device
57
+ rank (`int`, *optional*, defaults to 0):
58
+ Process rank for distributed training
59
+ t5_fsdp (`bool`, *optional*, defaults to False):
60
+ Enable FSDP sharding for T5 model
61
+ dit_fsdp (`bool`, *optional*, defaults to False):
62
+ Enable FSDP sharding for DiT model
63
+ use_usp (`bool`, *optional*, defaults to False):
64
+ Enable distribution strategy of USP.
65
+ t5_cpu (`bool`, *optional*, defaults to False):
66
+ Whether to place T5 model on CPU. Only works without t5_fsdp.
67
+ init_on_cpu (`bool`, *optional*, defaults to True):
68
+ Enable initializing Transformer Model on CPU. Only works without FSDP or USP.
69
+ """
70
+ self.device = torch.device(f"cuda:{device_id}")
71
+ self.config = config
72
+ self.rank = rank
73
+ self.use_usp = use_usp
74
+ self.t5_cpu = t5_cpu
75
+
76
+ self.num_train_timesteps = config.num_train_timesteps
77
+ self.param_dtype = config.param_dtype
78
+
79
+ shard_fn = partial(shard_model, device_id=device_id)
80
+ self.text_encoder = T5EncoderModel(
81
+ text_len=config.text_len,
82
+ dtype=config.t5_dtype,
83
+ device=torch.device('cpu'),
84
+ checkpoint_path=os.path.join(checkpoint_dir, config.t5_checkpoint),
85
+ tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
86
+ shard_fn=shard_fn if t5_fsdp else None,
87
+ )
88
+
89
+ self.vae_stride = config.vae_stride
90
+ self.patch_size = config.patch_size
91
+ self.vae = WanVAE(
92
+ vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint),
93
+ device=self.device)
94
+
95
+ self.clip = CLIPModel(
96
+ dtype=config.clip_dtype,
97
+ device=self.device,
98
+ checkpoint_path=os.path.join(checkpoint_dir,
99
+ config.clip_checkpoint),
100
+ tokenizer_path=os.path.join(checkpoint_dir, config.clip_tokenizer))
101
+
102
+ logging.info(f"Creating WanModel from {checkpoint_dir}")
103
+ self.model = WanModel.from_pretrained(checkpoint_dir)
104
+ self.model.eval().requires_grad_(False)
105
+
106
+ if t5_fsdp or dit_fsdp or use_usp:
107
+ init_on_cpu = False
108
+
109
+ if use_usp:
110
+ from xfuser.core.distributed import \
111
+ get_sequence_parallel_world_size
112
+
113
+ from .distributed.xdit_context_parallel import (usp_attn_forward,
114
+ usp_dit_forward)
115
+ for block in self.model.blocks:
116
+ block.self_attn.forward = types.MethodType(
117
+ usp_attn_forward, block.self_attn)
118
+ self.model.forward = types.MethodType(usp_dit_forward, self.model)
119
+ self.sp_size = get_sequence_parallel_world_size()
120
+ else:
121
+ self.sp_size = 1
122
+
123
+ if dist.is_initialized():
124
+ dist.barrier()
125
+ if dit_fsdp:
126
+ self.model = shard_fn(self.model)
127
+ else:
128
+ if not init_on_cpu:
129
+ self.model=self.model.to(self.device)
130
+
131
+ self.sample_neg_prompt = config.sample_neg_prompt
132
+
133
+ def generate(self,
134
+ input_prompt,
135
+ img,
136
+ max_area=720 * 1280,
137
+ frame_num=81,
138
+ shift=5.0,
139
+ sample_solver='unipc',
140
+ sampling_steps=40,
141
+ guide_scale=5.0,
142
+ n_prompt="",
143
+ seed=-1,
144
+ offload_model=True,speed=0):
145
+ r"""
146
+ Generates video frames from input image and text prompt using diffusion process.
147
+
148
+ Args:
149
+ input_prompt (`str`):
150
+ Text prompt for content generation.
151
+ img (PIL.Image.Image):
152
+ Input image tensor. Shape: [3, H, W]
153
+ max_area (`int`, *optional*, defaults to 720*1280):
154
+ Maximum pixel area for latent space calculation. Controls video resolution scaling
155
+ frame_num (`int`, *optional*, defaults to 81):
156
+ How many frames to sample from a video. The number should be 4n+1
157
+ shift (`float`, *optional*, defaults to 5.0):
158
+ Noise schedule shift parameter. Affects temporal dynamics
159
+ [NOTE]: If you want to generate a 480p video, it is recommended to set the shift value to 3.0.
160
+ sample_solver (`str`, *optional*, defaults to 'unipc'):
161
+ Solver used to sample the video.
162
+ sampling_steps (`int`, *optional*, defaults to 40):
163
+ Number of diffusion sampling steps. Higher values improve quality but slow generation
164
+ guide_scale (`float`, *optional*, defaults 5.0):
165
+ Classifier-free guidance scale. Controls prompt adherence vs. creativity
166
+ n_prompt (`str`, *optional*, defaults to ""):
167
+ Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
168
+ seed (`int`, *optional*, defaults to -1):
169
+ Random seed for noise generation. If -1, use random seed
170
+ offload_model (`bool`, *optional*, defaults to True):
171
+ If True, offloads models to CPU during generation to save VRAM
172
+
173
+ Returns:
174
+ torch.Tensor:
175
+ Generated video frames tensor. Dimensions: (C, N H, W) where:
176
+ - C: Color channels (3 for RGB)
177
+ - N: Number of frames (81)
178
+ - H: Frame height (from max_area)
179
+ - W: Frame width from max_area)
180
+ """
181
+ img = TF.to_tensor(img).sub_(0.5).div_(0.5).to(self.device)
182
+
183
+ F = frame_num
184
+ h, w = img.shape[1:]
185
+ aspect_ratio = h / w
186
+ lat_h = round(
187
+ np.sqrt(max_area * aspect_ratio) // self.vae_stride[1] //
188
+ self.patch_size[1] * self.patch_size[1])
189
+ lat_w = round(
190
+ np.sqrt(max_area / aspect_ratio) // self.vae_stride[2] //
191
+ self.patch_size[2] * self.patch_size[2])
192
+ h = lat_h * self.vae_stride[1]
193
+ w = lat_w * self.vae_stride[2]
194
+
195
+ max_seq_len = ((F - 1) // self.vae_stride[0] + 1) * lat_h * lat_w // (
196
+ self.patch_size[1] * self.patch_size[2])
197
+ max_seq_len = int(math.ceil(max_seq_len / self.sp_size)) * self.sp_size
198
+
199
+ seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
200
+ seed_g = torch.Generator(device=self.device)
201
+ seed_g.manual_seed(seed)
202
+ noise = torch.randn(
203
+ 16,
204
+ F//4+1,
205
+ lat_h,
206
+ lat_w,
207
+ dtype=torch.float32,
208
+ generator=seed_g,
209
+ device=self.device)
210
+
211
+ msk = torch.ones(1, F, lat_h, lat_w, device=self.device)
212
+ msk[:, 1:] = 0
213
+ msk = torch.concat([
214
+ torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]
215
+ ],dim=1)
216
+ msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w)
217
+ msk = msk.transpose(1, 2)[0]
218
+
219
+ if n_prompt == "":
220
+ n_prompt = self.sample_neg_prompt
221
+
222
+ # preprocess
223
+ if not self.t5_cpu:
224
+ self.text_encoder.model=self.text_encoder.model.to(self.device)
225
+ context = self.text_encoder([input_prompt], self.device)
226
+ context_null = self.text_encoder([n_prompt], self.device)
227
+ if offload_model:
228
+ self.text_encoder.model=self.text_encoder.model.cpu()
229
+ else:
230
+ context = self.text_encoder([input_prompt], torch.device('cpu'))
231
+ context_null = self.text_encoder([n_prompt], torch.device('cpu'))
232
+ context = [t.to(self.device) for t in context]
233
+ context_null = [t.to(self.device) for t in context_null]
234
+
235
+ self.clip.model=self.clip.model.to(self.device)
236
+ clip_context = self.clip.visual([img[:, None, :, :]])
237
+ if offload_model:
238
+ self.clip.model=self.clip.model.cpu()
239
+ torch.cuda.empty_cache()
240
+ y = self.vae.encode([
241
+ torch.concat([
242
+ torch.nn.functional.interpolate(
243
+ img[None].cpu(), size=(h, w), mode='bicubic').transpose(
244
+ 0, 1),
245
+ torch.zeros(3, F-1, h, w)
246
+ ],dim=1).to(self.device)
247
+ ])[0]
248
+ y = torch.concat([msk, y])
249
+
250
+ @contextmanager
251
+ def noop_no_sync():
252
+ yield
253
+
254
+ no_sync = getattr(self.model, 'no_sync', noop_no_sync)
255
+
256
+ # evaluation mode
257
+ with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync():
258
+ # sample videos
259
+ latents =latent = noise
260
+
261
+ arg_c = {
262
+ 'context': [context[0]],
263
+ 'clip_fea': clip_context,
264
+ 'seq_len': max_seq_len,
265
+ 'y': [y],
266
+ }
267
+
268
+ arg_null = {
269
+ 'context': context_null,
270
+ 'clip_fea': clip_context,
271
+ 'seq_len': max_seq_len,
272
+ 'y': [y],
273
+ }
274
+
275
+ if offload_model:
276
+ torch.cuda.empty_cache()
277
+
278
+ self.model=self.model.to(self.device)
279
+ if speed==0:
280
+ if sample_solver == 'unipc':
281
+ sample_scheduler = FlowUniPCMultistepScheduler(
282
+ num_train_timesteps=self.num_train_timesteps,
283
+ shift=1,
284
+ use_dynamic_shifting=False)
285
+ sample_scheduler.set_timesteps(
286
+ sampling_steps, device=self.device, shift=shift)
287
+ timesteps = sample_scheduler.timesteps
288
+ elif sample_solver == 'dpm++':
289
+ sample_scheduler = FlowDPMSolverMultistepScheduler(
290
+ num_train_timesteps=self.num_train_timesteps,
291
+ shift=1,
292
+ use_dynamic_shifting=False)
293
+ sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
294
+ timesteps, _ = retrieve_timesteps(
295
+ sample_scheduler,
296
+ device=self.device,
297
+ sigmas=sampling_sigmas)
298
+ else:
299
+ raise NotImplementedError("Unsupported solver.")
300
+ for _, t in enumerate(tqdm(timesteps)):
301
+ latent_model_input = [latent.to(self.device)]
302
+ timestep = [t]
303
+
304
+ timestep = torch.stack(timestep).to(self.device)
305
+ # print(timestep)
306
+ noise_pred_cond = self.model(latent_model_input, t=timestep, **arg_c)[0].to(torch.device('cpu') if offload_model else self.device)
307
+ # noise_pred_cond = latent_model_input[0]
308
+ if offload_model:
309
+ torch.cuda.empty_cache()
310
+ noise_pred_uncond = self.model(latent_model_input, t=timestep, **arg_null)[0].to(torch.device('cpu') if offload_model else self.device)
311
+
312
+ # noise_pred_uncond = latent_model_input[0]
313
+ if offload_model:
314
+ torch.cuda.empty_cache()
315
+ noise_pred = noise_pred_uncond + guide_scale * (
316
+ noise_pred_cond - noise_pred_uncond)
317
+
318
+ latent = latent.to(
319
+ torch.device('cpu') if offload_model else self.device)
320
+
321
+ temp_x0 = sample_scheduler.step(
322
+ noise_pred.unsqueeze(0),
323
+ t,
324
+ latent.unsqueeze(0),
325
+ return_dict=False,
326
+ generator=seed_g)[0]
327
+ latent = temp_x0.squeeze(0)
328
+
329
+ x0 = [latent.to(self.device)]
330
+ del latent_model_input, timestep
331
+ else:
332
+ n_ts=96
333
+ if sample_solver == 'unipc':
334
+ sample_scheduler = FlowUniPCMultistepScheduler(
335
+ num_train_timesteps=self.num_train_timesteps,
336
+ shift=1,
337
+ use_dynamic_shifting=False)
338
+ sample_scheduler.set_timesteps(
339
+ n_ts, device=self.device, shift=shift)
340
+ timesteps = sample_scheduler.timesteps
341
+ elif sample_solver == 'dpm++':
342
+ sample_scheduler = FlowDPMSolverMultistepScheduler(
343
+ num_train_timesteps=self.num_train_timesteps,
344
+ shift=1,
345
+ use_dynamic_shifting=False)
346
+ sampling_sigmas = get_sampling_sigmas(n_ts, shift)
347
+ timesteps, _ = retrieve_timesteps(
348
+ sample_scheduler,
349
+ device=self.device,
350
+ sigmas=sampling_sigmas)
351
+ else:
352
+ raise NotImplementedError("Unsupported solver.")
353
+ # pre-process
354
+ model = _WrappedModel_Wan(self.model, timesteps, self.num_train_timesteps, context_null, guide_scale)
355
+ model_kwargs = {
356
+ 'seq_len': max_seq_len,
357
+ 'y': [y],
358
+ 'clip_fea': clip_context,
359
+ }
360
+ latents = latents.unsqueeze(0)
361
+
362
+ oss_steps = [2, 6, 14, 28, 44, 56, 66, 74, 79, 84, 87, 90, 93, 94, 95, 96] ####oss544Pmed96-16
363
+ x0 = infer_OSS(oss_steps, model, latents, context, self.device, model_kwargs=model_kwargs)
364
+
365
+ if offload_model:
366
+ self.model=self.model.cpu()
367
+ torch.cuda.empty_cache()
368
+
369
+ if self.rank == 0:
370
+ videos = self.vae.decode(x0)
371
+
372
+ del noise, latent, latents
373
+ del sample_scheduler
374
+ if offload_model:
375
+ gc.collect()
376
+ torch.cuda.synchronize()
377
+ if dist.is_initialized():
378
+ dist.barrier()
379
+
380
+ return videos[0] if self.rank == 0 else None
wan/image2video_mdinfer_oss_stu.py ADDED
@@ -0,0 +1,454 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
2
+ import sys
3
+ sys.path.append('../OSS')
4
+ from OSS.OSS import search_OSS_video, infer_OSS
5
+ from OSS.model_wrap import _WrappedModel_Wan
6
+ import gc
7
+ import logging
8
+ import math
9
+ import os
10
+ import pdb
11
+ import random
12
+ import sys
13
+ import types
14
+ from contextlib import contextmanager
15
+ from functools import partial
16
+
17
+ import numpy as np
18
+ import torch
19
+ import torch.cuda.amp as amp
20
+ import torch.distributed as dist
21
+ import torchvision.transforms.functional as TF
22
+ from tqdm import tqdm
23
+
24
+ from .distributed.fsdp import shard_model
25
+ from .modules.clip import CLIPModel
26
+ from .modules.model_infer import WanModel
27
+ from .modules.t5 import T5EncoderModel
28
+ from .modules.vae import WanVAE
29
+ # from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler,get_sampling_sigmas, retrieve_timesteps)
30
+ from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler)
31
+ from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
32
+
33
+ from diffusers import FlowMatchEulerDiscreteScheduler
34
+
35
+ import inspect
36
+ import math
37
+ from typing import Callable, Dict, List, Optional, Tuple, Union
38
+
39
+ import torch
40
+ import numpy as np
41
+ import random
42
+ def set_seed(seed):
43
+ if seed == -1:
44
+ seed = random.randint(0, 1000000)
45
+ seed = int(seed)
46
+ random.seed(seed)
47
+ os.environ["PYTHONHASHSEED"] = str(seed)
48
+ np.random.seed(seed)
49
+ torch.manual_seed(seed)
50
+ torch.cuda.manual_seed(seed)
51
+ class FlowMatchScheduler():
52
+
53
+ def __init__(self, num_inference_steps=100, num_train_timesteps=1000, shift=3.0, sigma_max=1.0, sigma_min=0.003 / 1.002, inverse_timesteps=False, extra_one_step=False, reverse_sigmas=False):
54
+ self.num_train_timesteps = num_train_timesteps
55
+ self.shift = shift
56
+ self.sigma_max = sigma_max
57
+ self.sigma_min = sigma_min
58
+ self.inverse_timesteps = inverse_timesteps
59
+ self.extra_one_step = extra_one_step
60
+ self.reverse_sigmas = reverse_sigmas
61
+ self.set_timesteps(num_inference_steps)
62
+
63
+ def set_timesteps(self, num_inference_steps=100, denoising_strength=1.0, training=False, shift=None):
64
+ if shift is not None:
65
+ self.shift = shift
66
+ sigma_start = self.sigma_min + (self.sigma_max - self.sigma_min) * denoising_strength
67
+ if self.extra_one_step:
68
+ self.sigmas = torch.linspace(sigma_start, self.sigma_min, num_inference_steps + 1)[:-1]
69
+ else:
70
+ self.sigmas = torch.linspace(sigma_start, self.sigma_min, num_inference_steps)
71
+ if self.inverse_timesteps:
72
+ self.sigmas = torch.flip(self.sigmas, dims=[0])
73
+ self.sigmas = self.shift * self.sigmas / (1 + (self.shift - 1) * self.sigmas)
74
+ if self.reverse_sigmas:
75
+ self.sigmas = 1 - self.sigmas
76
+ self.timesteps = self.sigmas * self.num_train_timesteps
77
+ if training:
78
+ x = self.timesteps
79
+ y = torch.exp(-2 * ((x - num_inference_steps / 2) / num_inference_steps) ** 2)
80
+ y_shifted = y - y.min()
81
+ bsmntw_weighing = y_shifted * (num_inference_steps / y_shifted.sum())
82
+ self.linear_timesteps_weights = bsmntw_weighing
83
+
84
+ def step(self, model_output, timestep, sample, to_final=False):
85
+ if isinstance(timestep, torch.Tensor):
86
+ timestep = timestep.cpu()
87
+ timestep_id = torch.argmin((self.timesteps - timestep).abs())
88
+ sigma = self.sigmas[timestep_id]
89
+ if to_final or timestep_id + 1 >= len(self.timesteps):
90
+ sigma_ = 1 if (self.inverse_timesteps or self.reverse_sigmas) else 0
91
+ else:
92
+ sigma_ = self.sigmas[timestep_id + 1]
93
+ prev_sample = sample + model_output * (sigma_ - sigma)
94
+ return prev_sample
95
+
96
+ def return_to_timestep(self, timestep, sample, sample_stablized):
97
+ if isinstance(timestep, torch.Tensor):
98
+ timestep = timestep.cpu()
99
+ timestep_id = torch.argmin((self.timesteps - timestep).abs())
100
+ sigma = self.sigmas[timestep_id]
101
+ model_output = (sample - sample_stablized) / sigma
102
+ return model_output
103
+
104
+ def add_noise(self, original_samples, noise, timestep):
105
+ if isinstance(timestep, torch.Tensor):
106
+ timestep = timestep.cpu()
107
+ timestep_id = torch.argmin((self.timesteps - timestep).abs())
108
+ sigma = self.sigmas[timestep_id]
109
+ sample = (1 - sigma) * original_samples + sigma * noise
110
+ return sample
111
+
112
+ def training_target(self, sample, noise, timestep):
113
+ target = noise - sample
114
+ return target
115
+
116
+ def training_weight(self, timestep):
117
+ timestep_id = torch.argmin((self.timesteps - timestep.to(self.timesteps.device)).abs())
118
+ weights = self.linear_timesteps_weights[timestep_id]
119
+ return weights
120
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
121
+ def retrieve_timesteps(
122
+ scheduler,
123
+ num_inference_steps: Optional[int] = None,
124
+ device: Optional[Union[str, torch.device]] = None,
125
+ timesteps: Optional[List[int]] = None,
126
+ sigmas: Optional[List[float]] = None,
127
+ **kwargs,
128
+ ):
129
+ r"""
130
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
131
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
132
+
133
+ Args:
134
+ scheduler (`SchedulerMixin`):
135
+ The scheduler to get timesteps from.
136
+ num_inference_steps (`int`):
137
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
138
+ must be `None`.
139
+ device (`str` or `torch.device`, *optional*):
140
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
141
+ timesteps (`List[int]`, *optional*):
142
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
143
+ `num_inference_steps` and `sigmas` must be `None`.
144
+ sigmas (`List[float]`, *optional*):
145
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
146
+ `num_inference_steps` and `timesteps` must be `None`.
147
+
148
+ Returns:
149
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
150
+ second element is the number of inference steps.
151
+ """
152
+ if timesteps is not None and sigmas is not None:
153
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
154
+ if timesteps is not None:
155
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
156
+ if not accepts_timesteps:
157
+ raise ValueError(
158
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
159
+ f" timestep schedules. Please check whether you are using the correct scheduler."
160
+ )
161
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
162
+ timesteps = scheduler.timesteps
163
+ num_inference_steps = len(timesteps)
164
+ elif sigmas is not None:
165
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
166
+ if not accept_sigmas:
167
+ raise ValueError(
168
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
169
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
170
+ )
171
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
172
+ timesteps = scheduler.timesteps
173
+ num_inference_steps = len(timesteps)
174
+ else:
175
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
176
+ timesteps = scheduler.timesteps
177
+ return timesteps, num_inference_steps
178
+
179
+ class WanI2V:
180
+
181
+ def __init__(
182
+ self,
183
+ config,
184
+ checkpoint_dir,
185
+ device_id=0,
186
+ rank=0,
187
+ t5_fsdp=False,
188
+ dit_fsdp=False,
189
+ use_usp=False,
190
+ t5_cpu=False,
191
+ init_on_cpu=True,
192
+ ):
193
+ r"""
194
+ Initializes the image-to-video generation model components.
195
+
196
+ Args:
197
+ config (EasyDict):
198
+ Object containing model parameters initialized from config.py
199
+ checkpoint_dir (`str`):
200
+ Path to directory containing model checkpoints
201
+ device_id (`int`, *optional*, defaults to 0):
202
+ Id of target GPU device
203
+ rank (`int`, *optional*, defaults to 0):
204
+ Process rank for distributed training
205
+ t5_fsdp (`bool`, *optional*, defaults to False):
206
+ Enable FSDP sharding for T5 model
207
+ dit_fsdp (`bool`, *optional*, defaults to False):
208
+ Enable FSDP sharding for DiT model
209
+ use_usp (`bool`, *optional*, defaults to False):
210
+ Enable distribution strategy of USP.
211
+ t5_cpu (`bool`, *optional*, defaults to False):
212
+ Whether to place T5 model on CPU. Only works without t5_fsdp.
213
+ init_on_cpu (`bool`, *optional*, defaults to True):
214
+ Enable initializing Transformer Model on CPU. Only works without FSDP or USP.
215
+ """
216
+ self.device = torch.device(f"cuda:{device_id}")
217
+ self.config = config
218
+ self.rank = rank
219
+ self.use_usp = use_usp
220
+ self.t5_cpu = t5_cpu
221
+ self.scheduler =FlowMatchScheduler(shift=5, sigma_min=0.0, extra_one_step=True)
222
+ # self.scheduler =FlowMatchScheduler(shift=17, sigma_min=0.0, extra_one_step=True)
223
+ self.num_train_timesteps = config.num_train_timesteps
224
+ self.param_dtype = config.param_dtype
225
+
226
+ shard_fn = partial(shard_model, device_id=device_id)
227
+ self.text_encoder = T5EncoderModel(
228
+ text_len=config.text_len,
229
+ dtype=config.t5_dtype,
230
+ device=torch.device('cpu'),
231
+ checkpoint_path=os.path.join(checkpoint_dir, config.t5_checkpoint),
232
+ tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
233
+ shard_fn=shard_fn if t5_fsdp else None,
234
+ )
235
+
236
+ self.vae_stride = config.vae_stride
237
+ self.patch_size = config.patch_size
238
+ self.vae = WanVAE(
239
+ vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint),
240
+ device=self.device)
241
+
242
+ self.clip = CLIPModel(
243
+ dtype=config.clip_dtype,
244
+ device=self.device,
245
+ checkpoint_path=os.path.join(checkpoint_dir,config.clip_checkpoint),
246
+ tokenizer_path=os.path.join(checkpoint_dir, config.clip_tokenizer))
247
+
248
+ logging.info(f"Creating WanModel from {checkpoint_dir}")
249
+ self.model = WanModel.from_pretrained(checkpoint_dir)
250
+ self.model.eval().requires_grad_(False)
251
+
252
+ if t5_fsdp or dit_fsdp or use_usp:
253
+ init_on_cpu = False
254
+
255
+ if use_usp:
256
+ from xfuser.core.distributed import \
257
+ get_sequence_parallel_world_size
258
+
259
+ from .distributed.xdit_context_parallel import (usp_attn_forward,usp_dit_forward)
260
+ for block in self.model.blocks:
261
+ block.self_attn.forward = types.MethodType(
262
+ usp_attn_forward, block.self_attn)
263
+ self.model.forward = types.MethodType(usp_dit_forward, self.model)
264
+ self.sp_size = get_sequence_parallel_world_size()
265
+ else:
266
+ self.sp_size = 1
267
+
268
+ if dist.is_initialized():
269
+ dist.barrier()
270
+ if dit_fsdp:
271
+ self.model = shard_fn(self.model)
272
+ else:
273
+ if not init_on_cpu:
274
+ self.model=self.model.to(self.device)
275
+
276
+ self.sample_neg_prompt = config.sample_neg_prompt
277
+
278
+
279
+ def generate(self,
280
+ input_prompt,
281
+ img,
282
+ max_area=720 * 1280,
283
+ frame_num=81,
284
+ shift=5.0,
285
+ sample_solver='unipc',
286
+ sampling_steps=40,
287
+ guide_scale=5.0,
288
+ n_prompt="",
289
+ seed=-1,
290
+ offload_model=True,
291
+
292
+ student_steps=20,
293
+ norm=2,
294
+ frame_type="all",
295
+ channel_type="all",
296
+ random_channel=False,
297
+ ):
298
+ r"""
299
+ Generates video frames from input image and text prompt using diffusion process.
300
+
301
+ Args:
302
+ input_prompt (`str`):
303
+ Text prompt for content generation.
304
+ img (PIL.Image.Image):
305
+ Input image tensor. Shape: [3, H, W]
306
+ max_area (`int`, *optional*, defaults to 720*1280):
307
+ Maximum pixel area for latent space calculation. Controls video resolution scaling
308
+ frame_num (`int`, *optional*, defaults to 81):
309
+ How many frames to sample from a video. The number should be 4n+1
310
+ shift (`float`, *optional*, defaults to 5.0):
311
+ Noise schedule shift parameter. Affects temporal dynamics
312
+ [NOTE]: If you want to generate a 480p video, it is recommended to set the shift value to 3.0.
313
+ sample_solver (`str`, *optional*, defaults to 'unipc'):
314
+ Solver used to sample the video.
315
+ sampling_steps (`int`, *optional*, defaults to 40):
316
+ Number of diffusion sampling steps. Higher values improve quality but slow generation
317
+ guide_scale (`float`, *optional*, defaults 5.0):
318
+ Classifier-free guidance scale. Controls prompt adherence vs. creativity
319
+ n_prompt (`str`, *optional*, defaults to ""):
320
+ Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
321
+ seed (`int`, *optional*, defaults to -1):
322
+ Random seed for noise generation. If -1, use random seed
323
+ offload_model (`bool`, *optional*, defaults to True):
324
+ If True, offloads models to CPU during generation to save VRAM
325
+
326
+ Returns:
327
+ torch.Tensor:
328
+ Generated video frames tensor. Dimensions: (C, N H, W) where:
329
+ - C: Color channels (3 for RGB)
330
+ - N: Number of frames (81)
331
+ - H: Frame height (from max_area)
332
+ - W: Frame width from max_area)
333
+ """
334
+ img = TF.to_tensor(img).sub_(0.5).div_(0.5).to(self.device)
335
+
336
+ F = frame_num
337
+ h, w = img.shape[1:]
338
+ aspect_ratio = h / w
339
+ lat_h = round(
340
+ np.sqrt(max_area * aspect_ratio) // self.vae_stride[1] //
341
+ self.patch_size[1] * self.patch_size[1])
342
+ lat_w = round(
343
+ np.sqrt(max_area / aspect_ratio) // self.vae_stride[2] //
344
+ self.patch_size[2] * self.patch_size[2])
345
+ h = lat_h * self.vae_stride[1]
346
+ w = lat_w * self.vae_stride[2]
347
+
348
+ max_seq_len = ((F - 1) // self.vae_stride[0] + 1) * lat_h * lat_w // (
349
+ self.patch_size[1] * self.patch_size[2])
350
+ max_seq_len = int(math.ceil(max_seq_len / self.sp_size)) * self.sp_size
351
+
352
+ seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
353
+ if seed >= 0:
354
+ set_seed(seed)
355
+ seed_g = torch.Generator(device=self.device)
356
+ seed_g.manual_seed(seed)
357
+ noise = torch.randn(
358
+ 16,
359
+ F//4+1,
360
+ lat_h,
361
+ lat_w,
362
+ dtype=torch.float32,
363
+ generator=seed_g,
364
+ device=self.device)
365
+
366
+ msk = torch.ones(1, F, lat_h, lat_w, device=self.device)
367
+ msk[:, 1:] = 0
368
+ msk = torch.concat([
369
+ torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]
370
+ ],dim=1)
371
+ msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w)
372
+ msk = msk.transpose(1, 2)[0]
373
+
374
+ if n_prompt == "":
375
+ n_prompt = self.sample_neg_prompt
376
+
377
+ # preprocess
378
+ if not self.t5_cpu:
379
+ self.text_encoder.model=self.text_encoder.model.to(self.device)
380
+ context = self.text_encoder([input_prompt], self.device)
381
+ context_null = self.text_encoder([n_prompt], self.device)
382
+ if offload_model:
383
+ self.text_encoder.model=self.text_encoder.model.cpu()
384
+ else:
385
+ context = self.text_encoder([input_prompt], torch.device('cpu'))
386
+ context_null = self.text_encoder([n_prompt], torch.device('cpu'))
387
+ context = [t.to(self.device) for t in context]
388
+ context_null = [t.to(self.device) for t in context_null]
389
+
390
+ self.clip.model=self.clip.model.to(self.device)
391
+ clip_context = self.clip.visual([img[:, None, :, :]])
392
+ if offload_model:
393
+ self.clip.model=self.clip.model.cpu()
394
+ torch.cuda.empty_cache()
395
+ y = self.vae.encode([
396
+ torch.concat([
397
+ torch.nn.functional.interpolate(
398
+ img[None].cpu(), size=(h, w), mode='bicubic').transpose(
399
+ 0, 1),
400
+ torch.zeros(3, F-1, h, w)
401
+ ],dim=1).to(self.device)
402
+ ])[0]
403
+ y = torch.concat([msk, y])
404
+
405
+ @contextmanager
406
+ def noop_no_sync():
407
+ yield
408
+
409
+ no_sync = getattr(self.model, 'no_sync', noop_no_sync)
410
+
411
+ # sampling_steps=10
412
+ # evaluation mode
413
+ with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync():
414
+ device = self.device
415
+ num_inference_steps=sampling_steps
416
+ self.scheduler.set_timesteps(num_inference_steps, 1.0, shift=5.0)
417
+
418
+ # sample videos
419
+ latents = noise
420
+ if offload_model:
421
+ torch.cuda.empty_cache()
422
+
423
+ self.model=self.model.to(self.device)
424
+
425
+ # pre-process
426
+ model = _WrappedModel_Wan(self.model, self.scheduler.timesteps, self.num_train_timesteps, context_null, guide_scale)
427
+ model_kwargs = {
428
+ 'seq_len': max_seq_len,
429
+ 'y': [y],
430
+ 'clip_fea': clip_context,
431
+ }
432
+ latents = latents.unsqueeze(0)
433
+
434
+ oss_steps=[2, 6, 14, 28, 44, 56, 66, 74, 79, 84, 87, 90, 93, 94, 95, 96]####oss544Pmed96-16
435
+ # oss_steps=[2, 5, 11, 21, 36, 49, 63, 71, 80, 84, 87, 89, 92, 94, 95, 96]####oss544Pmed96-16
436
+ latents_oss = infer_OSS(oss_steps, model, latents, context, self.device, model_kwargs=model_kwargs)
437
+
438
+ x0_oss = latents_oss
439
+
440
+ if offload_model:
441
+ self.model.cpu()
442
+ torch.cuda.empty_cache()
443
+ if self.rank == 0:
444
+ videos_oss = self.vae.decode(x0_oss)
445
+
446
+ del noise, latents
447
+ # del self.scheduler
448
+ if offload_model:
449
+ gc.collect()
450
+ torch.cuda.synchronize()
451
+ if dist.is_initialized():
452
+ dist.barrier()
453
+
454
+ return videos_oss[0] if self.rank == 0 else None
wan/image2video_mdinfer_oss_tea.py ADDED
@@ -0,0 +1,513 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
2
+ import sys,os
3
+ sys.path.append('../OSS')
4
+ from OSS.OSS import search_OSS_video, infer_OSS
5
+ from OSS.model_wrap import _WrappedModel_Wan
6
+ import gc
7
+ import logging
8
+ import math
9
+ import os
10
+ import pdb
11
+ import random
12
+ import sys
13
+ import types
14
+ from contextlib import contextmanager
15
+ from functools import partial
16
+
17
+ import numpy as np
18
+ import torch
19
+ import torch.cuda.amp as amp
20
+ import torch.distributed as dist
21
+ import torchvision.transforms.functional as TF
22
+ from tqdm import tqdm
23
+
24
+ from .distributed.fsdp import shard_model
25
+ from .modules.clip import CLIPModel
26
+ from .modules.model_infer import WanModel
27
+ from .modules.t5 import T5EncoderModel
28
+ from .modules.vae import WanVAE
29
+ # from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler,get_sampling_sigmas, retrieve_timesteps)
30
+ from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler)
31
+ from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
32
+
33
+ from diffusers import FlowMatchEulerDiscreteScheduler
34
+
35
+ import inspect
36
+ import math
37
+ from typing import Callable, Dict, List, Optional, Tuple, Union
38
+
39
+ import torch
40
+ import numpy as np
41
+ import random
42
+ def set_seed(seed):
43
+ if seed == -1:
44
+ seed = random.randint(0, 1000000)
45
+ seed = int(seed)
46
+ random.seed(seed)
47
+ os.environ["PYTHONHASHSEED"] = str(seed)
48
+ np.random.seed(seed)
49
+ torch.manual_seed(seed)
50
+ torch.cuda.manual_seed(seed)
51
+ class FlowMatchScheduler():
52
+
53
+ def __init__(self, num_inference_steps=100, num_train_timesteps=1000, shift=3.0, sigma_max=1.0, sigma_min=0.003 / 1.002, inverse_timesteps=False, extra_one_step=False, reverse_sigmas=False):
54
+ self.num_train_timesteps = num_train_timesteps
55
+ self.shift = shift
56
+ self.sigma_max = sigma_max
57
+ self.sigma_min = sigma_min
58
+ self.inverse_timesteps = inverse_timesteps
59
+ self.extra_one_step = extra_one_step
60
+ self.reverse_sigmas = reverse_sigmas
61
+ self.set_timesteps(num_inference_steps)
62
+
63
+ def set_timesteps(self, num_inference_steps=100, denoising_strength=1.0, training=False, shift=None):
64
+ if shift is not None:
65
+ self.shift = shift
66
+ sigma_start = self.sigma_min + (self.sigma_max - self.sigma_min) * denoising_strength
67
+ if self.extra_one_step:
68
+ self.sigmas = torch.linspace(sigma_start, self.sigma_min, num_inference_steps + 1)[:-1]
69
+ else:
70
+ self.sigmas = torch.linspace(sigma_start, self.sigma_min, num_inference_steps)
71
+ if self.inverse_timesteps:
72
+ self.sigmas = torch.flip(self.sigmas, dims=[0])
73
+ self.sigmas = self.shift * self.sigmas / (1 + (self.shift - 1) * self.sigmas)
74
+ if self.reverse_sigmas:
75
+ self.sigmas = 1 - self.sigmas
76
+ self.timesteps = self.sigmas * self.num_train_timesteps
77
+ if training:
78
+ x = self.timesteps
79
+ y = torch.exp(-2 * ((x - num_inference_steps / 2) / num_inference_steps) ** 2)
80
+ y_shifted = y - y.min()
81
+ bsmntw_weighing = y_shifted * (num_inference_steps / y_shifted.sum())
82
+ self.linear_timesteps_weights = bsmntw_weighing
83
+
84
+ def step(self, model_output, timestep, sample, to_final=False):
85
+ if isinstance(timestep, torch.Tensor):
86
+ timestep = timestep.cpu()
87
+ timestep_id = torch.argmin((self.timesteps - timestep).abs())
88
+ sigma = self.sigmas[timestep_id]
89
+ if to_final or timestep_id + 1 >= len(self.timesteps):
90
+ sigma_ = 1 if (self.inverse_timesteps or self.reverse_sigmas) else 0
91
+ else:
92
+ sigma_ = self.sigmas[timestep_id + 1]
93
+ prev_sample = sample + model_output * (sigma_ - sigma)
94
+ return prev_sample
95
+
96
+ def return_to_timestep(self, timestep, sample, sample_stablized):
97
+ if isinstance(timestep, torch.Tensor):
98
+ timestep = timestep.cpu()
99
+ timestep_id = torch.argmin((self.timesteps - timestep).abs())
100
+ sigma = self.sigmas[timestep_id]
101
+ model_output = (sample - sample_stablized) / sigma
102
+ return model_output
103
+
104
+ def add_noise(self, original_samples, noise, timestep):
105
+ if isinstance(timestep, torch.Tensor):
106
+ timestep = timestep.cpu()
107
+ timestep_id = torch.argmin((self.timesteps - timestep).abs())
108
+ sigma = self.sigmas[timestep_id]
109
+ sample = (1 - sigma) * original_samples + sigma * noise
110
+ return sample
111
+
112
+ def training_target(self, sample, noise, timestep):
113
+ target = noise - sample
114
+ return target
115
+
116
+ def training_weight(self, timestep):
117
+ timestep_id = torch.argmin((self.timesteps - timestep.to(self.timesteps.device)).abs())
118
+ weights = self.linear_timesteps_weights[timestep_id]
119
+ return weights
120
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
121
+ def retrieve_timesteps(
122
+ scheduler,
123
+ num_inference_steps: Optional[int] = None,
124
+ device: Optional[Union[str, torch.device]] = None,
125
+ timesteps: Optional[List[int]] = None,
126
+ sigmas: Optional[List[float]] = None,
127
+ **kwargs,
128
+ ):
129
+ r"""
130
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
131
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
132
+
133
+ Args:
134
+ scheduler (`SchedulerMixin`):
135
+ The scheduler to get timesteps from.
136
+ num_inference_steps (`int`):
137
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
138
+ must be `None`.
139
+ device (`str` or `torch.device`, *optional*):
140
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
141
+ timesteps (`List[int]`, *optional*):
142
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
143
+ `num_inference_steps` and `sigmas` must be `None`.
144
+ sigmas (`List[float]`, *optional*):
145
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
146
+ `num_inference_steps` and `timesteps` must be `None`.
147
+
148
+ Returns:
149
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
150
+ second element is the number of inference steps.
151
+ """
152
+ if timesteps is not None and sigmas is not None:
153
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
154
+ if timesteps is not None:
155
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
156
+ if not accepts_timesteps:
157
+ raise ValueError(
158
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
159
+ f" timestep schedules. Please check whether you are using the correct scheduler."
160
+ )
161
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
162
+ timesteps = scheduler.timesteps
163
+ num_inference_steps = len(timesteps)
164
+ elif sigmas is not None:
165
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
166
+ if not accept_sigmas:
167
+ raise ValueError(
168
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
169
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
170
+ )
171
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
172
+ timesteps = scheduler.timesteps
173
+ num_inference_steps = len(timesteps)
174
+ else:
175
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
176
+ timesteps = scheduler.timesteps
177
+ return timesteps, num_inference_steps
178
+
179
+ class WanI2V:
180
+
181
+ def __init__(
182
+ self,
183
+ config,
184
+ checkpoint_dir,
185
+ device_id=0,
186
+ rank=0,
187
+ t5_fsdp=False,
188
+ dit_fsdp=False,
189
+ use_usp=False,
190
+ t5_cpu=False,
191
+ init_on_cpu=True,
192
+ ):
193
+ r"""
194
+ Initializes the image-to-video generation model components.
195
+
196
+ Args:
197
+ config (EasyDict):
198
+ Object containing model parameters initialized from config.py
199
+ checkpoint_dir (`str`):
200
+ Path to directory containing model checkpoints
201
+ device_id (`int`, *optional*, defaults to 0):
202
+ Id of target GPU device
203
+ rank (`int`, *optional*, defaults to 0):
204
+ Process rank for distributed training
205
+ t5_fsdp (`bool`, *optional*, defaults to False):
206
+ Enable FSDP sharding for T5 model
207
+ dit_fsdp (`bool`, *optional*, defaults to False):
208
+ Enable FSDP sharding for DiT model
209
+ use_usp (`bool`, *optional*, defaults to False):
210
+ Enable distribution strategy of USP.
211
+ t5_cpu (`bool`, *optional*, defaults to False):
212
+ Whether to place T5 model on CPU. Only works without t5_fsdp.
213
+ init_on_cpu (`bool`, *optional*, defaults to True):
214
+ Enable initializing Transformer Model on CPU. Only works without FSDP or USP.
215
+ """
216
+ self.device = torch.device(f"cuda:{device_id}")
217
+ self.config = config
218
+ self.rank = rank
219
+ self.use_usp = use_usp
220
+ self.t5_cpu = t5_cpu
221
+ self.scheduler =FlowMatchScheduler(shift=5, sigma_min=0.0, extra_one_step=True)
222
+ # self.scheduler =FlowMatchScheduler(shift=17, sigma_min=0.0, extra_one_step=True)
223
+ self.num_train_timesteps = config.num_train_timesteps
224
+ self.param_dtype = config.param_dtype
225
+
226
+ shard_fn = partial(shard_model, device_id=device_id)
227
+ self.text_encoder = T5EncoderModel(
228
+ text_len=config.text_len,
229
+ dtype=config.t5_dtype,
230
+ device=torch.device('cpu'),
231
+ checkpoint_path=os.path.join(checkpoint_dir, config.t5_checkpoint),
232
+ tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
233
+ shard_fn=shard_fn if t5_fsdp else None,
234
+ )
235
+
236
+ self.vae_stride = config.vae_stride
237
+ self.patch_size = config.patch_size
238
+ self.vae = WanVAE(
239
+ vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint),
240
+ device=self.device)
241
+
242
+ self.clip = CLIPModel(
243
+ dtype=config.clip_dtype,
244
+ device=self.device,
245
+ checkpoint_path=os.path.join(checkpoint_dir,config.clip_checkpoint),
246
+ tokenizer_path=os.path.join(checkpoint_dir, config.clip_tokenizer))
247
+
248
+ logging.info(f"Creating WanModel from {checkpoint_dir}")
249
+ self.model = WanModel.from_pretrained(checkpoint_dir)
250
+ self.model.eval().requires_grad_(False)
251
+
252
+ if t5_fsdp or dit_fsdp or use_usp:
253
+ init_on_cpu = False
254
+
255
+ if use_usp:
256
+ from xfuser.core.distributed import \
257
+ get_sequence_parallel_world_size
258
+
259
+ from .distributed.xdit_context_parallel import (usp_attn_forward,usp_dit_forward)
260
+ for block in self.model.blocks:
261
+ block.self_attn.forward = types.MethodType(
262
+ usp_attn_forward, block.self_attn)
263
+ self.model.forward = types.MethodType(usp_dit_forward, self.model)
264
+ self.sp_size = get_sequence_parallel_world_size()
265
+ else:
266
+ self.sp_size = 1
267
+
268
+ if dist.is_initialized():
269
+ dist.barrier()
270
+ if dit_fsdp:
271
+ self.model = shard_fn(self.model)
272
+ else:
273
+ if not init_on_cpu:
274
+ self.model=self.model.to(self.device)
275
+
276
+ self.sample_neg_prompt = config.sample_neg_prompt
277
+
278
+
279
+ def generate(self,
280
+ args,
281
+ input_prompt,
282
+ img,
283
+ max_area=720 * 1280,
284
+ frame_num=81,
285
+ shift=5.0,
286
+ sample_solver='unipc',
287
+ sampling_steps=40,
288
+ guide_scale=5.0,
289
+ n_prompt="",
290
+ seed=-1,
291
+ offload_model=True,
292
+
293
+ student_steps=20,
294
+ norm=2,
295
+ frame_type="all",
296
+ channel_type="all",
297
+ random_channel=False,
298
+ ):
299
+ r"""
300
+ Generates video frames from input image and text prompt using diffusion process.
301
+
302
+ Args:
303
+ input_prompt (`str`):
304
+ Text prompt for content generation.
305
+ img (PIL.Image.Image):
306
+ Input image tensor. Shape: [3, H, W]
307
+ max_area (`int`, *optional*, defaults to 720*1280):
308
+ Maximum pixel area for latent space calculation. Controls video resolution scaling
309
+ frame_num (`int`, *optional*, defaults to 81):
310
+ How many frames to sample from a video. The number should be 4n+1
311
+ shift (`float`, *optional*, defaults to 5.0):
312
+ Noise schedule shift parameter. Affects temporal dynamics
313
+ [NOTE]: If you want to generate a 480p video, it is recommended to set the shift value to 3.0.
314
+ sample_solver (`str`, *optional*, defaults to 'unipc'):
315
+ Solver used to sample the video.
316
+ sampling_steps (`int`, *optional*, defaults to 40):
317
+ Number of diffusion sampling steps. Higher values improve quality but slow generation
318
+ guide_scale (`float`, *optional*, defaults 5.0):
319
+ Classifier-free guidance scale. Controls prompt adherence vs. creativity
320
+ n_prompt (`str`, *optional*, defaults to ""):
321
+ Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
322
+ seed (`int`, *optional*, defaults to -1):
323
+ Random seed for noise generation. If -1, use random seed
324
+ offload_model (`bool`, *optional*, defaults to True):
325
+ If True, offloads models to CPU during generation to save VRAM
326
+
327
+ Returns:
328
+ torch.Tensor:
329
+ Generated video frames tensor. Dimensions: (C, N H, W) where:
330
+ - C: Color channels (3 for RGB)
331
+ - N: Number of frames (81)
332
+ - H: Frame height (from max_area)
333
+ - W: Frame width from max_area)
334
+ """
335
+ img = TF.to_tensor(img).sub_(0.5).div_(0.5).to(self.device)
336
+
337
+ F = frame_num
338
+ h, w = img.shape[1:]
339
+ aspect_ratio = h / w
340
+ lat_h = round(
341
+ np.sqrt(max_area * aspect_ratio) // self.vae_stride[1] //
342
+ self.patch_size[1] * self.patch_size[1])
343
+ lat_w = round(
344
+ np.sqrt(max_area / aspect_ratio) // self.vae_stride[2] //
345
+ self.patch_size[2] * self.patch_size[2])
346
+ h = lat_h * self.vae_stride[1]
347
+ w = lat_w * self.vae_stride[2]
348
+
349
+ max_seq_len = ((F - 1) // self.vae_stride[0] + 1) * lat_h * lat_w // (
350
+ self.patch_size[1] * self.patch_size[2])
351
+ max_seq_len = int(math.ceil(max_seq_len / self.sp_size)) * self.sp_size
352
+
353
+ seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
354
+ if seed >= 0:
355
+ set_seed(seed)
356
+ seed_g = torch.Generator(device=self.device)
357
+ seed_g.manual_seed(seed)
358
+ noise = torch.randn(
359
+ 16,
360
+ F//4+1,
361
+ lat_h,
362
+ lat_w,
363
+ dtype=torch.float32,
364
+ generator=seed_g,
365
+ device=self.device)
366
+
367
+ msk = torch.ones(1, F, lat_h, lat_w, device=self.device)
368
+ msk[:, 1:] = 0
369
+ msk = torch.concat([
370
+ torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]
371
+ ],dim=1)
372
+ msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w)
373
+ msk = msk.transpose(1, 2)[0]
374
+
375
+ if n_prompt == "":
376
+ n_prompt = self.sample_neg_prompt
377
+
378
+ # preprocess
379
+ if not self.t5_cpu:
380
+ self.text_encoder.model=self.text_encoder.model.to(self.device)
381
+ context = self.text_encoder([input_prompt], self.device)
382
+ context_null = self.text_encoder([n_prompt], self.device)
383
+ if offload_model:
384
+ self.text_encoder.model=self.text_encoder.model.cpu()
385
+ else:
386
+ context = self.text_encoder([input_prompt], torch.device('cpu'))
387
+ context_null = self.text_encoder([n_prompt], torch.device('cpu'))
388
+ context = [t.to(self.device) for t in context]
389
+ context_null = [t.to(self.device) for t in context_null]
390
+
391
+ self.clip.model=self.clip.model.to(self.device)
392
+ clip_context = self.clip.visual([img[:, None, :, :]])
393
+ if offload_model:
394
+ self.clip.model=self.clip.model.cpu()
395
+ torch.cuda.empty_cache()
396
+ y = self.vae.encode([
397
+ torch.concat([
398
+ torch.nn.functional.interpolate(
399
+ img[None].cpu(), size=(h, w), mode='bicubic').transpose(
400
+ 0, 1),
401
+ torch.zeros(3, F-1, h, w)
402
+ ],dim=1).to(self.device)
403
+ ])[0]
404
+ y = torch.concat([msk, y])
405
+
406
+ @contextmanager
407
+ def noop_no_sync():
408
+ yield
409
+
410
+ no_sync = getattr(self.model, 'no_sync', noop_no_sync)
411
+
412
+ # sampling_steps=10
413
+ # evaluation mode
414
+ with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync():
415
+ device = self.device
416
+ num_inference_steps=sampling_steps
417
+ self.scheduler.set_timesteps(num_inference_steps, 1.0, shift=5.0)
418
+
419
+ # sample videos
420
+ latents = noise
421
+ if offload_model:
422
+ torch.cuda.empty_cache()
423
+
424
+ self.model=self.model.to(self.device)
425
+
426
+
427
+
428
+ # arg_c = {
429
+ # 'context': [context[0]],
430
+ # 'clip_fea': clip_context,
431
+ # 'seq_len': max_seq_len,
432
+ # 'y': [y],
433
+ # }
434
+ #
435
+ # arg_null = {
436
+ # 'context': context_null,
437
+ # 'clip_fea': clip_context,
438
+ # 'seq_len': max_seq_len,
439
+ # 'y': [y],
440
+ # }
441
+
442
+ # pre-process
443
+ model = _WrappedModel_Wan(self.model, self.scheduler.timesteps, self.num_train_timesteps, context_null, guide_scale)
444
+ model_kwargs = {
445
+ 'seq_len': max_seq_len,
446
+ 'y': [y],
447
+ 'clip_fea': clip_context,
448
+ }
449
+ B = 1
450
+ # latents = latents[0].unsqueeze(0)
451
+ latents = latents.unsqueeze(0)
452
+
453
+ oss_steps = search_OSS_video(model, latents, B, context, self.device, teacher_steps=sampling_steps, student_steps=student_steps, norm=norm, model_kwargs=model_kwargs, frame_type=frame_type, channel_type=channel_type, random_channel=random_channel)
454
+ latents_oss = infer_OSS(oss_steps, model, latents, context, self.device, model_kwargs=model_kwargs)
455
+
456
+ with open("%s.txt"%args.save_file,"w")as f:f.write(str(oss_steps))
457
+ os._exit(2333)
458
+ # pdb.set_trace()
459
+ # teacher video
460
+ teacher_steps = list(range(1, sampling_steps+1))
461
+ latents_tea = infer_OSS(teacher_steps, model, latents, context, self.device, model_kwargs=model_kwargs)
462
+
463
+ x0_oss = latents_oss
464
+ x0_tea = latents_tea
465
+
466
+ if offload_model:
467
+ self.model.cpu()
468
+ torch.cuda.empty_cache()
469
+ if self.rank == 0:
470
+ videos_oss = self.vae.decode(x0_oss)
471
+ videos_tea = self.vae.decode(x0_tea)
472
+
473
+ # for idx, t in enumerate(tqdm(self.scheduler.timesteps)):
474
+ # latent_model_input = [latent.to(self.device)]
475
+ # timestep = [t]
476
+ #
477
+ # timestep = torch.stack(timestep).to(self.device)
478
+ # noise_pred_cond = self.model(latent_model_input, t=timestep, **arg_c)[0].to(torch.device('cpu') if offload_model else self.device)
479
+ # if offload_model:
480
+ # torch.cuda.empty_cache()
481
+ # noise_pred_uncond = self.model(latent_model_input, t=timestep, **arg_null)[0].to(torch.device('cpu') if offload_model else self.device)
482
+ # if offload_model:
483
+ # torch.cuda.empty_cache()
484
+ # noise_pred = noise_pred_uncond + guide_scale * (noise_pred_cond - noise_pred_uncond)
485
+ # # noise_pred = noise_pred_cond
486
+ # latent = latent.to(torch.device('cpu') if offload_model else self.device)
487
+ #
488
+ # # latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents)
489
+ # temp_x0 = self.scheduler.step(
490
+ # noise_pred.unsqueeze(0),
491
+ # self.scheduler.timesteps[idx],
492
+ # latent.unsqueeze(0))[0]
493
+ # latent = temp_x0.squeeze(0)
494
+ #
495
+ # x0 = [latent.to(self.device)]
496
+ # del latent_model_input, timestep
497
+ #
498
+ # if offload_model:
499
+ # self.model=self.model.cpu()
500
+ # torch.cuda.empty_cache()
501
+ #
502
+ # if self.rank == 0:
503
+ # videos = self.vae.decode(x0)
504
+
505
+ del noise, latents
506
+ # del self.scheduler
507
+ if offload_model:
508
+ gc.collect()
509
+ torch.cuda.synchronize()
510
+ if dist.is_initialized():
511
+ dist.barrier()
512
+
513
+ return videos[0] if self.rank == 0 else None
wan/modules/__init__.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .attention import flash_attention
2
+ from .model import WanModel
3
+ from .t5 import T5Decoder, T5Encoder, T5EncoderModel, T5Model
4
+ from .tokenizers import HuggingfaceTokenizer
5
+ from .vae import WanVAE
6
+
7
+ __all__ = [
8
+ 'WanVAE',
9
+ 'WanModel',
10
+ 'T5Model',
11
+ 'T5Encoder',
12
+ 'T5Decoder',
13
+ 'T5EncoderModel',
14
+ 'HuggingfaceTokenizer',
15
+ 'flash_attention',
16
+ ]
wan/modules/attention.py ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
2
+ import torch
3
+
4
+ try:
5
+ import flash_attn_interface
6
+ FLASH_ATTN_3_AVAILABLE = True
7
+ except ModuleNotFoundError:
8
+ FLASH_ATTN_3_AVAILABLE = False
9
+
10
+ try:
11
+ import flash_attn
12
+ FLASH_ATTN_2_AVAILABLE = True
13
+ except ModuleNotFoundError:
14
+ FLASH_ATTN_2_AVAILABLE = False
15
+
16
+ import warnings
17
+
18
+ __all__ = [
19
+ 'flash_attention',
20
+ 'attention',
21
+ ]
22
+
23
+ # try:
24
+ # # from sageattention import sageattn_varlen#sage1
25
+ # from sageattention import sageattn # sage2
26
+ #
27
+ # print("using sageattn2")
28
+ #
29
+ #
30
+ # @torch.compiler.disable()
31
+ # def sageattn_wrapper(
32
+ # q, k, v,
33
+ # attention_length
34
+ # ):
35
+ # padding_length = q.shape[0] - attention_length
36
+ # q = q[:attention_length, :, :].unsqueeze(0)
37
+ # k = k[:attention_length, :, :].unsqueeze(0)
38
+ # v = v[:attention_length, :, :].unsqueeze(0)
39
+ #
40
+ # o = sageattn(q, k, v, tensor_layout="NHD").squeeze(0)
41
+ # if padding_length > 0:
42
+ # o = torch.cat([o, torch.empty((padding_length, *o.shape[-2:]), dtype=o.dtype, device=o.device)], 0)
43
+ #
44
+ # return o
45
+ # except:
46
+ # sageattn_wrapper=None
47
+ # traceback.print_exc()
48
+
49
+ def flash_attention(
50
+ q,
51
+ k,
52
+ v,
53
+ q_lens=None,
54
+ k_lens=None,
55
+ dropout_p=0.,
56
+ softmax_scale=None,
57
+ q_scale=None,
58
+ causal=False,
59
+ window_size=(-1, -1),
60
+ deterministic=True,#False
61
+ dtype=torch.bfloat16,
62
+ version=None,
63
+ ):
64
+ """
65
+ q: [B, Lq, Nq, C1].
66
+ k: [B, Lk, Nk, C1].
67
+ v: [B, Lk, Nk, C2]. Nq must be divisible by Nk.
68
+ q_lens: [B].
69
+ k_lens: [B].
70
+ dropout_p: float. Dropout probability.
71
+ softmax_scale: float. The scaling of QK^T before applying softmax.
72
+ causal: bool. Whether to apply causal attention mask.
73
+ window_size: (left right). If not (-1, -1), apply sliding window local attention.
74
+ deterministic: bool. If True, slightly slower and uses more memory.
75
+ dtype: torch.dtype. Apply when dtype of q/k/v is not float16/bfloat16.
76
+ """
77
+ half_dtypes = (torch.float16, torch.bfloat16)
78
+ assert dtype in half_dtypes
79
+ assert q.device.type == 'cuda' and q.size(-1) <= 256
80
+
81
+ # params
82
+ b, lq, lk, out_dtype = q.size(0), q.size(1), k.size(1), q.dtype
83
+
84
+ def half(x):
85
+ return x if x.dtype in half_dtypes else x.to(dtype)
86
+
87
+ # preprocess query
88
+ if q_lens is None:
89
+ q = half(q.flatten(0, 1))
90
+ q_lens = torch.tensor(
91
+ [lq] * b, dtype=torch.int32).to(
92
+ device=q.device, non_blocking=True)
93
+ else:
94
+ q = half(torch.cat([u[:v] for u, v in zip(q, q_lens)]))
95
+
96
+ # preprocess key, value
97
+ if k_lens is None:
98
+ k = half(k.flatten(0, 1))
99
+ v = half(v.flatten(0, 1))
100
+ k_lens = torch.tensor(
101
+ [lk] * b, dtype=torch.int32).to(
102
+ device=k.device, non_blocking=True)
103
+ else:
104
+ k = half(torch.cat([u[:v] for u, v in zip(k, k_lens)]))
105
+ v = half(torch.cat([u[:v] for u, v in zip(v, k_lens)]))
106
+
107
+ q = q.to(v.dtype)
108
+ k = k.to(v.dtype)
109
+
110
+ if q_scale is not None:
111
+ q = q * q_scale
112
+
113
+ # if type(sageattn_wrapper)!=type(None):
114
+ # x = sageattn_wrapper(q, k, v, lq).unsqueeze(0)
115
+ # return x.type(out_dtype)
116
+
117
+ if version is not None and version == 3 and not FLASH_ATTN_3_AVAILABLE:
118
+ warnings.warn(
119
+ 'Flash attention 3 is not available, use flash attention 2 instead.'
120
+ )
121
+
122
+ # apply attention
123
+ if (version is None or version == 3) and FLASH_ATTN_3_AVAILABLE:
124
+ # Note: dropout_p, window_size are not supported in FA3 now.
125
+ x = flash_attn_interface.flash_attn_varlen_func(
126
+ q=q,
127
+ k=k,
128
+ v=v,
129
+ cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(
130
+ 0, dtype=torch.int32).to(q.device, non_blocking=True),
131
+ cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(
132
+ 0, dtype=torch.int32).to(q.device, non_blocking=True),
133
+ seqused_q=None,
134
+ seqused_k=None,
135
+ max_seqlen_q=lq,
136
+ max_seqlen_k=lk,
137
+ softmax_scale=softmax_scale,
138
+ causal=causal,
139
+ deterministic=deterministic)[0].unflatten(0, (b, lq))
140
+ else:
141
+ assert FLASH_ATTN_2_AVAILABLE
142
+ x = flash_attn.flash_attn_varlen_func(
143
+ q=q,
144
+ k=k,
145
+ v=v,
146
+ cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(
147
+ 0, dtype=torch.int32).to(q.device, non_blocking=True),
148
+ cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(
149
+ 0, dtype=torch.int32).to(q.device, non_blocking=True),
150
+ max_seqlen_q=lq,
151
+ max_seqlen_k=lk,
152
+ dropout_p=dropout_p,
153
+ softmax_scale=softmax_scale,
154
+ causal=causal,
155
+ window_size=window_size,
156
+ deterministic=deterministic).unflatten(0, (b, lq))
157
+
158
+ # output
159
+ return x.type(out_dtype)
160
+
161
+
162
+ def attention(
163
+ q,
164
+ k,
165
+ v,
166
+ q_lens=None,
167
+ k_lens=None,
168
+ dropout_p=0.,
169
+ softmax_scale=None,
170
+ q_scale=None,
171
+ causal=False,
172
+ window_size=(-1, -1),
173
+ deterministic=True,#False
174
+ dtype=torch.bfloat16,
175
+ fa_version=None,
176
+ ):
177
+ if FLASH_ATTN_2_AVAILABLE or FLASH_ATTN_3_AVAILABLE:
178
+ return flash_attention(
179
+ q=q,
180
+ k=k,
181
+ v=v,
182
+ q_lens=q_lens,
183
+ k_lens=k_lens,
184
+ dropout_p=dropout_p,
185
+ softmax_scale=softmax_scale,
186
+ q_scale=q_scale,
187
+ causal=causal,
188
+ window_size=window_size,
189
+ deterministic=deterministic,
190
+ dtype=dtype,
191
+ version=fa_version,
192
+ )
193
+ else:
194
+ if q_lens is not None or k_lens is not None:
195
+ warnings.warn(
196
+ 'Padding mask is disabled when using scaled_dot_product_attention. It can have a significant impact on performance.'
197
+ )
198
+ attn_mask = None
199
+
200
+ q = q.transpose(1, 2).to(dtype)
201
+ k = k.transpose(1, 2).to(dtype)
202
+ v = v.transpose(1, 2).to(dtype)
203
+
204
+ out = torch.nn.functional.scaled_dot_product_attention(
205
+ q, k, v, attn_mask=attn_mask, is_causal=causal, dropout_p=dropout_p)
206
+
207
+ out = out.transpose(1, 2).contiguous()
208
+ return out