Spaces:
Running
on
Zero
Running
on
Zero
Create communications.py
Browse files- wan/modules/communications.py +516 -0
wan/modules/communications.py
ADDED
@@ -0,0 +1,516 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
import os
|
4 |
+
|
5 |
+
# DeepSpeed Team
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.distributed as dist
|
9 |
+
from fastvideo.utils.parallel_states import nccl_info
|
10 |
+
from typing import Any, Tuple
|
11 |
+
from torch import Tensor
|
12 |
+
from torch.nn import Module
|
13 |
+
|
14 |
+
|
15 |
+
def broadcast(input_: torch.Tensor):
|
16 |
+
src = nccl_info.group_id * nccl_info.sp_size
|
17 |
+
dist.broadcast(input_, src=src, group=nccl_info.group)
|
18 |
+
|
19 |
+
|
20 |
+
def _all_to_all_4D(
|
21 |
+
input: torch.tensor, scatter_idx: int = 2, gather_idx: int = 1, group=None
|
22 |
+
) -> torch.tensor:
|
23 |
+
"""
|
24 |
+
all-to-all for QKV
|
25 |
+
|
26 |
+
Args:
|
27 |
+
input (torch.tensor): a tensor sharded along dim scatter dim
|
28 |
+
scatter_idx (int): default 1
|
29 |
+
gather_idx (int): default 2
|
30 |
+
group : torch process group
|
31 |
+
|
32 |
+
Returns:
|
33 |
+
torch.tensor: resharded tensor (bs, seqlen/P, hc, hs)
|
34 |
+
"""
|
35 |
+
assert (
|
36 |
+
input.dim() == 4
|
37 |
+
), f"input must be 4D tensor, got {input.dim()} and shape {input.shape}"
|
38 |
+
|
39 |
+
seq_world_size = dist.get_world_size(group)
|
40 |
+
|
41 |
+
if scatter_idx == 2 and gather_idx == 1:
|
42 |
+
# input (torch.tensor): a tensor sharded along dim 1 (bs, seqlen/P, hc, hs) output: (bs, seqlen, hc/P, hs)
|
43 |
+
bs, shard_seqlen, hc, hs = input.shape
|
44 |
+
seqlen = shard_seqlen * seq_world_size
|
45 |
+
shard_hc = hc // seq_world_size
|
46 |
+
|
47 |
+
# transpose groups of heads with the seq-len parallel dimension, so that we can scatter them!
|
48 |
+
# (bs, seqlen/P, hc, hs) -reshape-> (bs, seq_len/P, P, hc/P, hs) -transpose(0,2)-> (P, seq_len/P, bs, hc/P, hs)
|
49 |
+
input_t = (
|
50 |
+
input.reshape(bs, shard_seqlen, seq_world_size, shard_hc, hs)
|
51 |
+
.transpose(0, 2)
|
52 |
+
.contiguous()
|
53 |
+
)
|
54 |
+
|
55 |
+
output = torch.empty_like(input_t)
|
56 |
+
# https://pytorch.org/docs/stable/distributed.html#torch.distributed.all_to_all_single
|
57 |
+
# (P, seq_len/P, bs, hc/P, hs) scatter seqlen -all2all-> (P, seq_len/P, bs, hc/P, hs) scatter head
|
58 |
+
if seq_world_size > 1:
|
59 |
+
dist.all_to_all_single(output, input_t, group=group)
|
60 |
+
torch.cuda.synchronize()
|
61 |
+
else:
|
62 |
+
output = input_t
|
63 |
+
# if scattering the seq-dim, transpose the heads back to the original dimension
|
64 |
+
output = output.reshape(seqlen, bs, shard_hc, hs)
|
65 |
+
|
66 |
+
# (seq_len, bs, hc/P, hs) -reshape-> (bs, seq_len, hc/P, hs)
|
67 |
+
output = output.transpose(0, 1).contiguous().reshape(bs, seqlen, shard_hc, hs)
|
68 |
+
|
69 |
+
return output
|
70 |
+
|
71 |
+
elif scatter_idx == 1 and gather_idx == 2:
|
72 |
+
# input (torch.tensor): a tensor sharded along dim 1 (bs, seqlen, hc/P, hs) output: (bs, seqlen/P, hc, hs)
|
73 |
+
bs, seqlen, shard_hc, hs = input.shape
|
74 |
+
hc = shard_hc * seq_world_size
|
75 |
+
shard_seqlen = seqlen // seq_world_size
|
76 |
+
seq_world_size = dist.get_world_size(group)
|
77 |
+
|
78 |
+
# transpose groups of heads with the seq-len parallel dimension, so that we can scatter them!
|
79 |
+
# (bs, seqlen, hc/P, hs) -reshape-> (bs, P, seq_len/P, hc/P, hs) -transpose(0, 3)-> (hc/P, P, seqlen/P, bs, hs) -transpose(0, 1) -> (P, hc/P, seqlen/P, bs, hs)
|
80 |
+
input_t = (
|
81 |
+
input.reshape(bs, seq_world_size, shard_seqlen, shard_hc, hs)
|
82 |
+
.transpose(0, 3)
|
83 |
+
.transpose(0, 1)
|
84 |
+
.contiguous()
|
85 |
+
.reshape(seq_world_size, shard_hc, shard_seqlen, bs, hs)
|
86 |
+
)
|
87 |
+
|
88 |
+
output = torch.empty_like(input_t)
|
89 |
+
# https://pytorch.org/docs/stable/distributed.html#torch.distributed.all_to_all_single
|
90 |
+
# (P, bs x hc/P, seqlen/P, hs) scatter seqlen -all2all-> (P, bs x seq_len/P, hc/P, hs) scatter head
|
91 |
+
if seq_world_size > 1:
|
92 |
+
dist.all_to_all_single(output, input_t, group=group)
|
93 |
+
torch.cuda.synchronize()
|
94 |
+
else:
|
95 |
+
output = input_t
|
96 |
+
|
97 |
+
# if scattering the seq-dim, transpose the heads back to the original dimension
|
98 |
+
output = output.reshape(hc, shard_seqlen, bs, hs)
|
99 |
+
|
100 |
+
# (hc, seqlen/N, bs, hs) -tranpose(0,2)-> (bs, seqlen/N, hc, hs)
|
101 |
+
output = output.transpose(0, 2).contiguous().reshape(bs, shard_seqlen, hc, hs)
|
102 |
+
|
103 |
+
return output
|
104 |
+
else:
|
105 |
+
raise RuntimeError("scatter_idx must be 1 or 2 and gather_idx must be 1 or 2")
|
106 |
+
|
107 |
+
|
108 |
+
class SeqAllToAll4D(torch.autograd.Function):
|
109 |
+
@staticmethod
|
110 |
+
def forward(
|
111 |
+
ctx: Any,
|
112 |
+
group: dist.ProcessGroup,
|
113 |
+
input: Tensor,
|
114 |
+
scatter_idx: int,
|
115 |
+
gather_idx: int,
|
116 |
+
) -> Tensor:
|
117 |
+
ctx.group = group
|
118 |
+
ctx.scatter_idx = scatter_idx
|
119 |
+
ctx.gather_idx = gather_idx
|
120 |
+
|
121 |
+
return _all_to_all_4D(input, scatter_idx, gather_idx, group=group)
|
122 |
+
|
123 |
+
@staticmethod
|
124 |
+
def backward(ctx: Any, *grad_output: Tensor) -> Tuple[None, Tensor, None, None]:
|
125 |
+
return (
|
126 |
+
None,
|
127 |
+
SeqAllToAll4D.apply(
|
128 |
+
ctx.group, *grad_output, ctx.gather_idx, ctx.scatter_idx
|
129 |
+
),
|
130 |
+
None,
|
131 |
+
None,
|
132 |
+
)
|
133 |
+
|
134 |
+
|
135 |
+
def all_to_all_4D(
|
136 |
+
input_: torch.Tensor, scatter_dim: int = 2, gather_dim: int = 1,
|
137 |
+
):
|
138 |
+
return SeqAllToAll4D.apply(nccl_info.group, input_, scatter_dim, gather_dim)
|
139 |
+
|
140 |
+
|
141 |
+
def _all_to_all(
|
142 |
+
input_: torch.Tensor,
|
143 |
+
world_size: int,
|
144 |
+
group: dist.ProcessGroup,
|
145 |
+
scatter_dim: int,
|
146 |
+
gather_dim: int,
|
147 |
+
):
|
148 |
+
input_list = [
|
149 |
+
t.contiguous() for t in torch.tensor_split(input_, world_size, scatter_dim)
|
150 |
+
]
|
151 |
+
output_list = [torch.empty_like(input_list[0]) for _ in range(world_size)]
|
152 |
+
dist.all_to_all(output_list, input_list, group=group)
|
153 |
+
return torch.cat(output_list, dim=gather_dim).contiguous()
|
154 |
+
|
155 |
+
|
156 |
+
class _AllToAll(torch.autograd.Function):
|
157 |
+
"""All-to-all communication.
|
158 |
+
|
159 |
+
Args:
|
160 |
+
input_: input matrix
|
161 |
+
process_group: communication group
|
162 |
+
scatter_dim: scatter dimension
|
163 |
+
gather_dim: gather dimension
|
164 |
+
"""
|
165 |
+
|
166 |
+
@staticmethod
|
167 |
+
def forward(ctx, input_, process_group, scatter_dim, gather_dim):
|
168 |
+
ctx.process_group = process_group
|
169 |
+
ctx.scatter_dim = scatter_dim
|
170 |
+
ctx.gather_dim = gather_dim
|
171 |
+
ctx.world_size = dist.get_world_size(process_group)
|
172 |
+
output = _all_to_all(
|
173 |
+
input_, ctx.world_size, process_group, scatter_dim, gather_dim
|
174 |
+
)
|
175 |
+
return output
|
176 |
+
|
177 |
+
@staticmethod
|
178 |
+
def backward(ctx, grad_output):
|
179 |
+
grad_output = _all_to_all(
|
180 |
+
grad_output,
|
181 |
+
ctx.world_size,
|
182 |
+
ctx.process_group,
|
183 |
+
ctx.gather_dim,
|
184 |
+
ctx.scatter_dim,
|
185 |
+
)
|
186 |
+
return (
|
187 |
+
grad_output,
|
188 |
+
None,
|
189 |
+
None,
|
190 |
+
None,
|
191 |
+
)
|
192 |
+
|
193 |
+
|
194 |
+
def all_to_all(
|
195 |
+
input_: torch.Tensor, scatter_dim: int = 2, gather_dim: int = 1,
|
196 |
+
):
|
197 |
+
return _AllToAll.apply(input_, nccl_info.group, scatter_dim, gather_dim)
|
198 |
+
|
199 |
+
|
200 |
+
class _AllGather(torch.autograd.Function):
|
201 |
+
"""All-gather communication with autograd support.
|
202 |
+
|
203 |
+
Args:
|
204 |
+
input_: input tensor
|
205 |
+
dim: dimension along which to concatenate
|
206 |
+
"""
|
207 |
+
|
208 |
+
@staticmethod
|
209 |
+
def forward(ctx, input_, dim):
|
210 |
+
ctx.dim = dim
|
211 |
+
world_size = nccl_info.sp_size
|
212 |
+
group = nccl_info.group
|
213 |
+
input_size = list(input_.size())
|
214 |
+
|
215 |
+
ctx.input_size = input_size[dim]
|
216 |
+
|
217 |
+
tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
|
218 |
+
input_ = input_.contiguous()
|
219 |
+
dist.all_gather(tensor_list, input_, group=group)
|
220 |
+
|
221 |
+
output = torch.cat(tensor_list, dim=dim)
|
222 |
+
return output
|
223 |
+
|
224 |
+
@staticmethod
|
225 |
+
def backward(ctx, grad_output):
|
226 |
+
world_size = nccl_info.sp_size
|
227 |
+
rank = nccl_info.rank_within_group
|
228 |
+
dim = ctx.dim
|
229 |
+
input_size = ctx.input_size
|
230 |
+
|
231 |
+
sizes = [input_size] * world_size
|
232 |
+
|
233 |
+
grad_input_list = torch.split(grad_output, sizes, dim=dim)
|
234 |
+
grad_input = grad_input_list[rank]
|
235 |
+
|
236 |
+
return grad_input, None
|
237 |
+
|
238 |
+
|
239 |
+
def all_gather(input_: torch.Tensor, dim: int = 1):
|
240 |
+
"""Performs an all-gather operation on the input tensor along the specified dimension.
|
241 |
+
|
242 |
+
Args:
|
243 |
+
input_ (torch.Tensor): Input tensor of shape [B, H, S, D].
|
244 |
+
dim (int, optional): Dimension along which to concatenate. Defaults to 1.
|
245 |
+
|
246 |
+
Returns:
|
247 |
+
torch.Tensor: Output tensor after all-gather operation, concatenated along 'dim'.
|
248 |
+
"""
|
249 |
+
return _AllGather.apply(input_, dim)
|
250 |
+
|
251 |
+
|
252 |
+
def prepare_sequence_parallel_data(
|
253 |
+
hidden_states, encoder_hidden_states, attention_mask, encoder_attention_mask
|
254 |
+
):###not use fastvideo default sp data
|
255 |
+
return (
|
256 |
+
hidden_states,
|
257 |
+
encoder_hidden_states,
|
258 |
+
attention_mask,
|
259 |
+
encoder_attention_mask,
|
260 |
+
)
|
261 |
+
if nccl_info.sp_size == 1:
|
262 |
+
return (
|
263 |
+
hidden_states,
|
264 |
+
encoder_hidden_states,
|
265 |
+
attention_mask,
|
266 |
+
encoder_attention_mask,
|
267 |
+
)
|
268 |
+
|
269 |
+
def prepare(
|
270 |
+
hidden_states, encoder_hidden_states, attention_mask, encoder_attention_mask
|
271 |
+
):
|
272 |
+
hidden_states = all_to_all(hidden_states, scatter_dim=2, gather_dim=0)
|
273 |
+
encoder_hidden_states = all_to_all(
|
274 |
+
encoder_hidden_states, scatter_dim=1, gather_dim=0
|
275 |
+
)
|
276 |
+
attention_mask = all_to_all(attention_mask, scatter_dim=1, gather_dim=0)
|
277 |
+
encoder_attention_mask = all_to_all(
|
278 |
+
encoder_attention_mask, scatter_dim=1, gather_dim=0
|
279 |
+
)
|
280 |
+
return (
|
281 |
+
hidden_states,
|
282 |
+
encoder_hidden_states,
|
283 |
+
attention_mask,
|
284 |
+
encoder_attention_mask,
|
285 |
+
)
|
286 |
+
|
287 |
+
sp_size = nccl_info.sp_size
|
288 |
+
# frame = hidden_states.shape[2]
|
289 |
+
# print(2333333,frame)#13
|
290 |
+
# assert frame % sp_size == 0, "frame should be a multiple of sp_size"
|
291 |
+
|
292 |
+
(
|
293 |
+
hidden_states,
|
294 |
+
encoder_hidden_states,
|
295 |
+
attention_mask,
|
296 |
+
encoder_attention_mask,
|
297 |
+
) = prepare(
|
298 |
+
hidden_states,
|
299 |
+
encoder_hidden_states.repeat(1, sp_size, 1),
|
300 |
+
attention_mask.repeat(1, sp_size, 1, 1),
|
301 |
+
encoder_attention_mask.repeat(1, sp_size),
|
302 |
+
)
|
303 |
+
|
304 |
+
return hidden_states, encoder_hidden_states, attention_mask, encoder_attention_mask
|
305 |
+
|
306 |
+
|
307 |
+
def sp_parallel_dataloader_wrapper(
|
308 |
+
dataloader, device, train_batch_size, sp_size, train_sp_batch_size
|
309 |
+
):
|
310 |
+
while True:
|
311 |
+
for data_item in dataloader:
|
312 |
+
latents, cond, attn_mask, cond_mask = data_item
|
313 |
+
latents = latents.to(device)
|
314 |
+
cond = cond.to(device)
|
315 |
+
attn_mask = attn_mask.to(device)
|
316 |
+
cond_mask = cond_mask.to(device)
|
317 |
+
frame = latents.shape[2]
|
318 |
+
if frame == 1:
|
319 |
+
yield latents, cond, attn_mask, cond_mask
|
320 |
+
else:
|
321 |
+
latents, cond, attn_mask, cond_mask = prepare_sequence_parallel_data(
|
322 |
+
latents, cond, attn_mask, cond_mask
|
323 |
+
)
|
324 |
+
assert (
|
325 |
+
train_batch_size * sp_size >= train_sp_batch_size
|
326 |
+
), "train_batch_size * sp_size should be greater than train_sp_batch_size"
|
327 |
+
for iter in range(train_batch_size * sp_size // train_sp_batch_size):
|
328 |
+
st_idx = iter * train_sp_batch_size
|
329 |
+
ed_idx = (iter + 1) * train_sp_batch_size
|
330 |
+
encoder_hidden_states = cond[st_idx:ed_idx]
|
331 |
+
attention_mask = attn_mask[st_idx:ed_idx]
|
332 |
+
encoder_attention_mask = cond_mask[st_idx:ed_idx]
|
333 |
+
yield (
|
334 |
+
latents[st_idx:ed_idx],
|
335 |
+
encoder_hidden_states,
|
336 |
+
attention_mask,
|
337 |
+
encoder_attention_mask,
|
338 |
+
)
|
339 |
+
|
340 |
+
|
341 |
+
|
342 |
+
def _split_sequence_func(input_, pg: dist.ProcessGroup, dim: int, pad: int):
|
343 |
+
# skip if only one rank involved
|
344 |
+
world_size = dist.get_world_size(pg)
|
345 |
+
rank = dist.get_rank(pg)
|
346 |
+
if world_size == 1:
|
347 |
+
return input_
|
348 |
+
|
349 |
+
if pad > 0:
|
350 |
+
pad_size = list(input_.shape)
|
351 |
+
pad_size[dim] = pad
|
352 |
+
input_ = torch.cat([input_, torch.zeros(pad_size, dtype=input_.dtype, device=input_.device)], dim=dim)
|
353 |
+
|
354 |
+
dim_size = input_.size(dim)
|
355 |
+
assert dim_size % world_size == 0, f"dim_size ({dim_size}) is not divisible by world_size ({world_size})"
|
356 |
+
|
357 |
+
tensor_list = torch.split(input_, dim_size // world_size, dim=dim)
|
358 |
+
output = tensor_list[rank].contiguous()
|
359 |
+
# if output.grad!=None:####must be None...
|
360 |
+
# print(1111111,output.grad)
|
361 |
+
return output
|
362 |
+
|
363 |
+
|
364 |
+
def _gather_sequence_func(input_, pg: dist.ProcessGroup, dim: int, pad: int):
|
365 |
+
# skip if only one rank involved
|
366 |
+
input_ = input_.contiguous()
|
367 |
+
world_size = dist.get_world_size(pg)
|
368 |
+
dist.get_rank(pg)
|
369 |
+
|
370 |
+
if world_size == 1:
|
371 |
+
return input_
|
372 |
+
|
373 |
+
# all gather
|
374 |
+
tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
|
375 |
+
assert input_.device.type == "cuda"
|
376 |
+
torch.distributed.all_gather(tensor_list, input_, group=pg)
|
377 |
+
|
378 |
+
# concat
|
379 |
+
output = torch.cat(tensor_list, dim=dim)
|
380 |
+
|
381 |
+
if pad > 0:
|
382 |
+
output = output.narrow(dim, 0, output.size(dim) - pad)
|
383 |
+
|
384 |
+
return output
|
385 |
+
|
386 |
+
|
387 |
+
class _GatherForwardSplitBackward(torch.autograd.Function):
|
388 |
+
"""
|
389 |
+
Gather the input sequence.
|
390 |
+
|
391 |
+
Args:
|
392 |
+
input_: input matrix.
|
393 |
+
process_group: process group.
|
394 |
+
dim: dimension
|
395 |
+
"""
|
396 |
+
|
397 |
+
@staticmethod
|
398 |
+
def symbolic(graph, input_):
|
399 |
+
return _gather_sequence_func(input_)
|
400 |
+
|
401 |
+
@staticmethod
|
402 |
+
def forward(ctx, input_, process_group, dim, grad_scale, pad):
|
403 |
+
ctx.process_group = process_group
|
404 |
+
ctx.dim = dim
|
405 |
+
ctx.grad_scale = grad_scale
|
406 |
+
ctx.pad = pad
|
407 |
+
return _gather_sequence_func(input_, process_group, dim, pad)
|
408 |
+
|
409 |
+
@staticmethod
|
410 |
+
def backward(ctx, grad_output):
|
411 |
+
if ctx.grad_scale == "up":
|
412 |
+
grad_output = grad_output * dist.get_world_size(ctx.process_group)
|
413 |
+
elif ctx.grad_scale == "down":
|
414 |
+
grad_output = grad_output / dist.get_world_size(ctx.process_group)
|
415 |
+
|
416 |
+
return _split_sequence_func(grad_output, ctx.process_group, ctx.dim, ctx.pad), None, None, None, None
|
417 |
+
|
418 |
+
|
419 |
+
|
420 |
+
class _SplitForwardGatherBackward(torch.autograd.Function):
|
421 |
+
"""
|
422 |
+
Split sequence.
|
423 |
+
|
424 |
+
Args:
|
425 |
+
input_: input matrix.
|
426 |
+
process_group: parallel mode.
|
427 |
+
dim: dimension
|
428 |
+
"""
|
429 |
+
|
430 |
+
@staticmethod
|
431 |
+
def symbolic(graph, input_):
|
432 |
+
return _split_sequence_func(input_)
|
433 |
+
|
434 |
+
@staticmethod
|
435 |
+
def forward(ctx, input_, process_group, dim, grad_scale, pad):
|
436 |
+
ctx.process_group = process_group
|
437 |
+
ctx.dim = dim
|
438 |
+
ctx.grad_scale = grad_scale
|
439 |
+
ctx.pad = pad
|
440 |
+
return _split_sequence_func(input_, process_group, dim, pad)
|
441 |
+
|
442 |
+
@staticmethod
|
443 |
+
def backward(ctx, grad_output):
|
444 |
+
if ctx.grad_scale == "up":
|
445 |
+
grad_output = grad_output * dist.get_world_size(ctx.process_group)
|
446 |
+
elif ctx.grad_scale == "down":
|
447 |
+
grad_output = grad_output / dist.get_world_size(ctx.process_group)
|
448 |
+
return _gather_sequence_func(grad_output, ctx.process_group, ctx.dim, ctx.pad), None, None, None, None
|
449 |
+
|
450 |
+
|
451 |
+
# def split_sequence(input_, process_group, dim, grad_scale=1.0, pad=0):
|
452 |
+
# return _SplitForwardGatherBackward.apply(input_, process_group, dim, grad_scale, pad)
|
453 |
+
# def gather_sequence(input_, process_group, dim, grad_scale=1.0, pad=0):
|
454 |
+
# return _GatherForwardSplitBackward.apply(input_, process_group, dim, grad_scale, pad)
|
455 |
+
|
456 |
+
# if_print=0
|
457 |
+
def split_sequence(input_, dim, grad_scale=1.0, pad=0):
|
458 |
+
# global if_print
|
459 |
+
# if if_print==0:
|
460 |
+
# # print(123232323, int(os.getenv("RANK", "0")), nccl_info.group)
|
461 |
+
# print(123232323, int(os.getenv("RANK", "0")), dist.get_rank(nccl_info.group),dist.get_world_size(nccl_info.group))
|
462 |
+
# if_print=1
|
463 |
+
process_group=nccl_info.group
|
464 |
+
return _SplitForwardGatherBackward.apply(input_, process_group, dim, grad_scale, pad)
|
465 |
+
def gather_sequence(input_, dim, grad_scale=1.0, pad=0):
|
466 |
+
process_group=nccl_info.group
|
467 |
+
# print(process_group)
|
468 |
+
return _GatherForwardSplitBackward.apply(input_, process_group, dim, grad_scale, pad)
|
469 |
+
|
470 |
+
import torch
|
471 |
+
import torch.distributed as dist
|
472 |
+
import torch.nn.functional as F
|
473 |
+
from einops import rearrange
|
474 |
+
from torch import Tensor
|
475 |
+
from torch.distributed import ProcessGroup
|
476 |
+
|
477 |
+
def _all_to_all_func(input_, world_size, group, scatter_dim, gather_dim):
|
478 |
+
input_list = [t.contiguous() for t in torch.tensor_split(input_, world_size, scatter_dim)]
|
479 |
+
output_list = [torch.empty_like(input_list[0]) for _ in range(world_size)]
|
480 |
+
dist.all_to_all(output_list, input_list, group=group)
|
481 |
+
return torch.cat(output_list, dim=gather_dim).contiguous()
|
482 |
+
|
483 |
+
|
484 |
+
class _AllToAll1(torch.autograd.Function):
|
485 |
+
"""All-to-all communication.
|
486 |
+
|
487 |
+
Args:
|
488 |
+
input_: input matrix
|
489 |
+
process_group: communication group
|
490 |
+
scatter_dim: scatter dimension
|
491 |
+
gather_dim: gather dimension
|
492 |
+
"""
|
493 |
+
|
494 |
+
@staticmethod
|
495 |
+
def forward(ctx, input_, process_group, scatter_dim, gather_dim):
|
496 |
+
ctx.process_group = process_group
|
497 |
+
ctx.scatter_dim = scatter_dim
|
498 |
+
ctx.gather_dim = gather_dim
|
499 |
+
world_size = dist.get_world_size(process_group)
|
500 |
+
|
501 |
+
return _all_to_all_func(input_, world_size, process_group, scatter_dim, gather_dim)
|
502 |
+
|
503 |
+
@staticmethod
|
504 |
+
def backward(ctx, *grad_output):
|
505 |
+
process_group = ctx.process_group
|
506 |
+
scatter_dim = ctx.gather_dim
|
507 |
+
gather_dim = ctx.scatter_dim
|
508 |
+
return_grad = _AllToAll1.apply(*grad_output, process_group, scatter_dim, gather_dim)
|
509 |
+
return (return_grad, None, None, None)
|
510 |
+
|
511 |
+
|
512 |
+
# def all_to_all_comm(input_, process_group=None, scatter_dim=2, gather_dim=1):
|
513 |
+
# return _AllToAll1.apply(input_, process_group, scatter_dim, gather_dim)
|
514 |
+
def all_to_all_comm(input_,scatter_dim=2, gather_dim=1):
|
515 |
+
process_group=nccl_info.group
|
516 |
+
return _AllToAll1.apply(input_, process_group, scatter_dim, gather_dim)
|