''' nohup python preprocess/extract-vae1.py 0 2 >> vae1.log 2>&1 & nohup python preprocess/extract-vae1.py 1 2 >> vae1.log 2>&1 & 0/1: What part does this process do 2: It consists of two parts in total. ''' root_mp4s="test_data/mp4root" h,w=480,832 num_frames = 49 opt_root="output_root/vae1" checkpoint_dir="/DATA/bvac/personal/wan21/Wan2.1-I2V-14B-480P" import os,sys,traceback import pdb os.environ["CUDA_VISIBLE_DEVICES"]=sys.argv[1] all=int(sys.argv[2]) i_part=int(os.environ["CUDA_VISIBLE_DEVICES"]) import pdb,torch from wan.modules.vae import WanVAE device="cuda" vae = WanVAE(vae_pth=os.path.join(checkpoint_dir, 'Wan2.1_VAE.pth'),device=device) from decord import VideoReader import torchvision.transforms.functional as TF def read_img(path): vr = VideoReader(uri=path, height=-1, width=-1) temp_frms = vr.get_batch([2]) return (TF.to_tensor(temp_frms.asnumpy().astype("float32")[0])/255).sub_(0.5).div_(0.5).to(device) os.makedirs(opt_root,exist_ok=True) def go(todos): for path in todos: try: name=os.path.basename(path).replace(".mp4",".pt") if os.path.exists("%s/%s"%(opt_root,name)):continue img = read_img(path) tensorr = vae.encode([ torch.concat([ torch.nn.functional.interpolate( img[None].cpu(), size=(h, w), mode='bicubic').transpose( 0, 1), torch.zeros(3, num_frames-1, h, w) ], dim=1).to(device) ])[0].cpu() # torch.Size([16, 21, 90, 160])#21->13 save_path="%s/%s"%(opt_root,name) torch.save(tensorr, save_path) except: print(path,traceback.format_exc()) todo=[] for name in os.listdir(root_mp4s): todo.append("%s/%s"%(root_mp4s,name)) todo=sorted(todo) todo=todo[i_part::all] go(todo)