# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. import sys sys.path.append('../OSS') from OSS.OSS import search_OSS_video, infer_OSS from OSS.model_wrap import _WrappedModel_Wan import gc import logging import math import os import pdb import random import sys import types from contextlib import contextmanager from functools import partial import numpy as np import torch import torch.cuda.amp as amp import torch.distributed as dist import torchvision.transforms.functional as TF from tqdm import tqdm from .distributed.fsdp import shard_model from .modules.clip import CLIPModel from .modules.model_infer import WanModel from .modules.t5 import T5EncoderModel from .modules.vae import WanVAE # from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler,get_sampling_sigmas, retrieve_timesteps) from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler) from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler from diffusers import FlowMatchEulerDiscreteScheduler import inspect import math from typing import Callable, Dict, List, Optional, Tuple, Union import torch import numpy as np import random def set_seed(seed): if seed == -1: seed = random.randint(0, 1000000) seed = int(seed) random.seed(seed) os.environ["PYTHONHASHSEED"] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) class FlowMatchScheduler(): def __init__(self, num_inference_steps=100, num_train_timesteps=1000, shift=3.0, sigma_max=1.0, sigma_min=0.003 / 1.002, inverse_timesteps=False, extra_one_step=False, reverse_sigmas=False): self.num_train_timesteps = num_train_timesteps self.shift = shift self.sigma_max = sigma_max self.sigma_min = sigma_min self.inverse_timesteps = inverse_timesteps self.extra_one_step = extra_one_step self.reverse_sigmas = reverse_sigmas self.set_timesteps(num_inference_steps) def set_timesteps(self, num_inference_steps=100, denoising_strength=1.0, training=False, shift=None): if shift is not None: self.shift = shift sigma_start = self.sigma_min + (self.sigma_max - self.sigma_min) * denoising_strength if self.extra_one_step: self.sigmas = torch.linspace(sigma_start, self.sigma_min, num_inference_steps + 1)[:-1] else: self.sigmas = torch.linspace(sigma_start, self.sigma_min, num_inference_steps) if self.inverse_timesteps: self.sigmas = torch.flip(self.sigmas, dims=[0]) self.sigmas = self.shift * self.sigmas / (1 + (self.shift - 1) * self.sigmas) if self.reverse_sigmas: self.sigmas = 1 - self.sigmas self.timesteps = self.sigmas * self.num_train_timesteps if training: x = self.timesteps y = torch.exp(-2 * ((x - num_inference_steps / 2) / num_inference_steps) ** 2) y_shifted = y - y.min() bsmntw_weighing = y_shifted * (num_inference_steps / y_shifted.sum()) self.linear_timesteps_weights = bsmntw_weighing def step(self, model_output, timestep, sample, to_final=False): if isinstance(timestep, torch.Tensor): timestep = timestep.cpu() timestep_id = torch.argmin((self.timesteps - timestep).abs()) sigma = self.sigmas[timestep_id] if to_final or timestep_id + 1 >= len(self.timesteps): sigma_ = 1 if (self.inverse_timesteps or self.reverse_sigmas) else 0 else: sigma_ = self.sigmas[timestep_id + 1] prev_sample = sample + model_output * (sigma_ - sigma) return prev_sample def return_to_timestep(self, timestep, sample, sample_stablized): if isinstance(timestep, torch.Tensor): timestep = timestep.cpu() timestep_id = torch.argmin((self.timesteps - timestep).abs()) sigma = self.sigmas[timestep_id] model_output = (sample - sample_stablized) / sigma return model_output def add_noise(self, original_samples, noise, timestep): if isinstance(timestep, torch.Tensor): timestep = timestep.cpu() timestep_id = torch.argmin((self.timesteps - timestep).abs()) sigma = self.sigmas[timestep_id] sample = (1 - sigma) * original_samples + sigma * noise return sample def training_target(self, sample, noise, timestep): target = noise - sample return target def training_weight(self, timestep): timestep_id = torch.argmin((self.timesteps - timestep.to(self.timesteps.device)).abs()) weights = self.linear_timesteps_weights[timestep_id] return weights # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps def retrieve_timesteps( scheduler, num_inference_steps: Optional[int] = None, device: Optional[Union[str, torch.device]] = None, timesteps: Optional[List[int]] = None, sigmas: Optional[List[float]] = None, **kwargs, ): r""" Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. Args: scheduler (`SchedulerMixin`): The scheduler to get timesteps from. num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` must be `None`. device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. timesteps (`List[int]`, *optional*): Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, `num_inference_steps` and `sigmas` must be `None`. sigmas (`List[float]`, *optional*): Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, `num_inference_steps` and `timesteps` must be `None`. Returns: `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the second element is the number of inference steps. """ if timesteps is not None and sigmas is not None: raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") if timesteps is not None: accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) if not accepts_timesteps: raise ValueError( f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" f" timestep schedules. Please check whether you are using the correct scheduler." ) scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) elif sigmas is not None: accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) if not accept_sigmas: raise ValueError( f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" f" sigmas schedules. Please check whether you are using the correct scheduler." ) scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) else: scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) timesteps = scheduler.timesteps return timesteps, num_inference_steps class WanI2V: def __init__( self, config, checkpoint_dir, device_id=0, rank=0, t5_fsdp=False, dit_fsdp=False, use_usp=False, t5_cpu=False, init_on_cpu=True, ): r""" Initializes the image-to-video generation model components. Args: config (EasyDict): Object containing model parameters initialized from config.py checkpoint_dir (`str`): Path to directory containing model checkpoints device_id (`int`, *optional*, defaults to 0): Id of target GPU device rank (`int`, *optional*, defaults to 0): Process rank for distributed training t5_fsdp (`bool`, *optional*, defaults to False): Enable FSDP sharding for T5 model dit_fsdp (`bool`, *optional*, defaults to False): Enable FSDP sharding for DiT model use_usp (`bool`, *optional*, defaults to False): Enable distribution strategy of USP. t5_cpu (`bool`, *optional*, defaults to False): Whether to place T5 model on CPU. Only works without t5_fsdp. init_on_cpu (`bool`, *optional*, defaults to True): Enable initializing Transformer Model on CPU. Only works without FSDP or USP. """ self.device = torch.device(f"cuda:{device_id}") self.config = config self.rank = rank self.use_usp = use_usp self.t5_cpu = t5_cpu self.scheduler =FlowMatchScheduler(shift=5, sigma_min=0.0, extra_one_step=True) # self.scheduler =FlowMatchScheduler(shift=17, sigma_min=0.0, extra_one_step=True) self.num_train_timesteps = config.num_train_timesteps self.param_dtype = config.param_dtype shard_fn = partial(shard_model, device_id=device_id) self.text_encoder = T5EncoderModel( text_len=config.text_len, dtype=config.t5_dtype, device=torch.device('cpu'), checkpoint_path=os.path.join(checkpoint_dir, config.t5_checkpoint), tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer), shard_fn=shard_fn if t5_fsdp else None, ) self.vae_stride = config.vae_stride self.patch_size = config.patch_size self.vae = WanVAE( vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint), device=self.device) self.clip = CLIPModel( dtype=config.clip_dtype, device=self.device, checkpoint_path=os.path.join(checkpoint_dir,config.clip_checkpoint), tokenizer_path=os.path.join(checkpoint_dir, config.clip_tokenizer)) logging.info(f"Creating WanModel from {checkpoint_dir}") self.model = WanModel.from_pretrained(checkpoint_dir) self.model.eval().requires_grad_(False) if t5_fsdp or dit_fsdp or use_usp: init_on_cpu = False if use_usp: from xfuser.core.distributed import \ get_sequence_parallel_world_size from .distributed.xdit_context_parallel import (usp_attn_forward,usp_dit_forward) for block in self.model.blocks: block.self_attn.forward = types.MethodType( usp_attn_forward, block.self_attn) self.model.forward = types.MethodType(usp_dit_forward, self.model) self.sp_size = get_sequence_parallel_world_size() else: self.sp_size = 1 if dist.is_initialized(): dist.barrier() if dit_fsdp: self.model = shard_fn(self.model) else: if not init_on_cpu: self.model=self.model.to(self.device) self.sample_neg_prompt = config.sample_neg_prompt def generate(self, input_prompt, img, max_area=720 * 1280, frame_num=81, shift=5.0, sample_solver='unipc', sampling_steps=40, guide_scale=5.0, n_prompt="", seed=-1, offload_model=True, student_steps=20, norm=2, frame_type="all", channel_type="all", random_channel=False, ): r""" Generates video frames from input image and text prompt using diffusion process. Args: input_prompt (`str`): Text prompt for content generation. img (PIL.Image.Image): Input image tensor. Shape: [3, H, W] max_area (`int`, *optional*, defaults to 720*1280): Maximum pixel area for latent space calculation. Controls video resolution scaling frame_num (`int`, *optional*, defaults to 81): How many frames to sample from a video. The number should be 4n+1 shift (`float`, *optional*, defaults to 5.0): Noise schedule shift parameter. Affects temporal dynamics [NOTE]: If you want to generate a 480p video, it is recommended to set the shift value to 3.0. sample_solver (`str`, *optional*, defaults to 'unipc'): Solver used to sample the video. sampling_steps (`int`, *optional*, defaults to 40): Number of diffusion sampling steps. Higher values improve quality but slow generation guide_scale (`float`, *optional*, defaults 5.0): Classifier-free guidance scale. Controls prompt adherence vs. creativity n_prompt (`str`, *optional*, defaults to ""): Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt` seed (`int`, *optional*, defaults to -1): Random seed for noise generation. If -1, use random seed offload_model (`bool`, *optional*, defaults to True): If True, offloads models to CPU during generation to save VRAM Returns: torch.Tensor: Generated video frames tensor. Dimensions: (C, N H, W) where: - C: Color channels (3 for RGB) - N: Number of frames (81) - H: Frame height (from max_area) - W: Frame width from max_area) """ img = TF.to_tensor(img).sub_(0.5).div_(0.5).to(self.device) F = frame_num h, w = img.shape[1:] aspect_ratio = h / w lat_h = round( np.sqrt(max_area * aspect_ratio) // self.vae_stride[1] // self.patch_size[1] * self.patch_size[1]) lat_w = round( np.sqrt(max_area / aspect_ratio) // self.vae_stride[2] // self.patch_size[2] * self.patch_size[2]) h = lat_h * self.vae_stride[1] w = lat_w * self.vae_stride[2] max_seq_len = ((F - 1) // self.vae_stride[0] + 1) * lat_h * lat_w // ( self.patch_size[1] * self.patch_size[2]) max_seq_len = int(math.ceil(max_seq_len / self.sp_size)) * self.sp_size seed = seed if seed >= 0 else random.randint(0, sys.maxsize) if seed >= 0: set_seed(seed) seed_g = torch.Generator(device=self.device) seed_g.manual_seed(seed) noise = torch.randn( 16, F//4+1, lat_h, lat_w, dtype=torch.float32, generator=seed_g, device=self.device) msk = torch.ones(1, F, lat_h, lat_w, device=self.device) msk[:, 1:] = 0 msk = torch.concat([ torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:] ],dim=1) msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w) msk = msk.transpose(1, 2)[0] if n_prompt == "": n_prompt = self.sample_neg_prompt # preprocess if not self.t5_cpu: self.text_encoder.model=self.text_encoder.model.to(self.device) context = self.text_encoder([input_prompt], self.device) context_null = self.text_encoder([n_prompt], self.device) if offload_model: self.text_encoder.model=self.text_encoder.model.cpu() else: context = self.text_encoder([input_prompt], torch.device('cpu')) context_null = self.text_encoder([n_prompt], torch.device('cpu')) context = [t.to(self.device) for t in context] context_null = [t.to(self.device) for t in context_null] self.clip.model=self.clip.model.to(self.device) clip_context = self.clip.visual([img[:, None, :, :]]) if offload_model: self.clip.model=self.clip.model.cpu() torch.cuda.empty_cache() y = self.vae.encode([ torch.concat([ torch.nn.functional.interpolate( img[None].cpu(), size=(h, w), mode='bicubic').transpose( 0, 1), torch.zeros(3, F-1, h, w) ],dim=1).to(self.device) ])[0] y = torch.concat([msk, y]) @contextmanager def noop_no_sync(): yield no_sync = getattr(self.model, 'no_sync', noop_no_sync) # sampling_steps=10 # evaluation mode with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync(): device = self.device num_inference_steps=sampling_steps self.scheduler.set_timesteps(num_inference_steps, 1.0, shift=5.0) # sample videos latents = noise if offload_model: torch.cuda.empty_cache() self.model=self.model.to(self.device) # pre-process model = _WrappedModel_Wan(self.model, self.scheduler.timesteps, self.num_train_timesteps, context_null, guide_scale) model_kwargs = { 'seq_len': max_seq_len, 'y': [y], 'clip_fea': clip_context, } latents = latents.unsqueeze(0) oss_steps=[2, 6, 18, 36, 47, 56, 65, 72, 78, 83, 87, 90, 92, 94, 95, 96] latents_oss = infer_OSS(oss_steps, model, latents, context, self.device, model_kwargs=model_kwargs) x0_oss = latents_oss if offload_model: self.model.cpu() torch.cuda.empty_cache() if self.rank == 0: videos_oss = self.vae.decode(x0_oss) del noise, latents # del self.scheduler if offload_model: gc.collect() torch.cuda.synchronize() if dist.is_initialized(): dist.barrier() return videos_oss[0] if self.rank == 0 else None