# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 import os # DeepSpeed Team import torch import torch.distributed as dist from fastvideo.utils.parallel_states import nccl_info from typing import Any, Tuple from torch import Tensor from torch.nn import Module def broadcast(input_: torch.Tensor): src = nccl_info.group_id * nccl_info.sp_size dist.broadcast(input_, src=src, group=nccl_info.group) def _all_to_all_4D( input: torch.tensor, scatter_idx: int = 2, gather_idx: int = 1, group=None ) -> torch.tensor: """ all-to-all for QKV Args: input (torch.tensor): a tensor sharded along dim scatter dim scatter_idx (int): default 1 gather_idx (int): default 2 group : torch process group Returns: torch.tensor: resharded tensor (bs, seqlen/P, hc, hs) """ assert ( input.dim() == 4 ), f"input must be 4D tensor, got {input.dim()} and shape {input.shape}" seq_world_size = dist.get_world_size(group) if scatter_idx == 2 and gather_idx == 1: # input (torch.tensor): a tensor sharded along dim 1 (bs, seqlen/P, hc, hs) output: (bs, seqlen, hc/P, hs) bs, shard_seqlen, hc, hs = input.shape seqlen = shard_seqlen * seq_world_size shard_hc = hc // seq_world_size # transpose groups of heads with the seq-len parallel dimension, so that we can scatter them! # (bs, seqlen/P, hc, hs) -reshape-> (bs, seq_len/P, P, hc/P, hs) -transpose(0,2)-> (P, seq_len/P, bs, hc/P, hs) input_t = ( input.reshape(bs, shard_seqlen, seq_world_size, shard_hc, hs) .transpose(0, 2) .contiguous() ) output = torch.empty_like(input_t) # https://pytorch.org/docs/stable/distributed.html#torch.distributed.all_to_all_single # (P, seq_len/P, bs, hc/P, hs) scatter seqlen -all2all-> (P, seq_len/P, bs, hc/P, hs) scatter head if seq_world_size > 1: dist.all_to_all_single(output, input_t, group=group) torch.cuda.synchronize() else: output = input_t # if scattering the seq-dim, transpose the heads back to the original dimension output = output.reshape(seqlen, bs, shard_hc, hs) # (seq_len, bs, hc/P, hs) -reshape-> (bs, seq_len, hc/P, hs) output = output.transpose(0, 1).contiguous().reshape(bs, seqlen, shard_hc, hs) return output elif scatter_idx == 1 and gather_idx == 2: # input (torch.tensor): a tensor sharded along dim 1 (bs, seqlen, hc/P, hs) output: (bs, seqlen/P, hc, hs) bs, seqlen, shard_hc, hs = input.shape hc = shard_hc * seq_world_size shard_seqlen = seqlen // seq_world_size seq_world_size = dist.get_world_size(group) # transpose groups of heads with the seq-len parallel dimension, so that we can scatter them! # (bs, seqlen, hc/P, hs) -reshape-> (bs, P, seq_len/P, hc/P, hs) -transpose(0, 3)-> (hc/P, P, seqlen/P, bs, hs) -transpose(0, 1) -> (P, hc/P, seqlen/P, bs, hs) input_t = ( input.reshape(bs, seq_world_size, shard_seqlen, shard_hc, hs) .transpose(0, 3) .transpose(0, 1) .contiguous() .reshape(seq_world_size, shard_hc, shard_seqlen, bs, hs) ) output = torch.empty_like(input_t) # https://pytorch.org/docs/stable/distributed.html#torch.distributed.all_to_all_single # (P, bs x hc/P, seqlen/P, hs) scatter seqlen -all2all-> (P, bs x seq_len/P, hc/P, hs) scatter head if seq_world_size > 1: dist.all_to_all_single(output, input_t, group=group) torch.cuda.synchronize() else: output = input_t # if scattering the seq-dim, transpose the heads back to the original dimension output = output.reshape(hc, shard_seqlen, bs, hs) # (hc, seqlen/N, bs, hs) -tranpose(0,2)-> (bs, seqlen/N, hc, hs) output = output.transpose(0, 2).contiguous().reshape(bs, shard_seqlen, hc, hs) return output else: raise RuntimeError("scatter_idx must be 1 or 2 and gather_idx must be 1 or 2") class SeqAllToAll4D(torch.autograd.Function): @staticmethod def forward( ctx: Any, group: dist.ProcessGroup, input: Tensor, scatter_idx: int, gather_idx: int, ) -> Tensor: ctx.group = group ctx.scatter_idx = scatter_idx ctx.gather_idx = gather_idx return _all_to_all_4D(input, scatter_idx, gather_idx, group=group) @staticmethod def backward(ctx: Any, *grad_output: Tensor) -> Tuple[None, Tensor, None, None]: return ( None, SeqAllToAll4D.apply( ctx.group, *grad_output, ctx.gather_idx, ctx.scatter_idx ), None, None, ) def all_to_all_4D( input_: torch.Tensor, scatter_dim: int = 2, gather_dim: int = 1, ): return SeqAllToAll4D.apply(nccl_info.group, input_, scatter_dim, gather_dim) def _all_to_all( input_: torch.Tensor, world_size: int, group: dist.ProcessGroup, scatter_dim: int, gather_dim: int, ): input_list = [ t.contiguous() for t in torch.tensor_split(input_, world_size, scatter_dim) ] output_list = [torch.empty_like(input_list[0]) for _ in range(world_size)] dist.all_to_all(output_list, input_list, group=group) return torch.cat(output_list, dim=gather_dim).contiguous() class _AllToAll(torch.autograd.Function): """All-to-all communication. Args: input_: input matrix process_group: communication group scatter_dim: scatter dimension gather_dim: gather dimension """ @staticmethod def forward(ctx, input_, process_group, scatter_dim, gather_dim): ctx.process_group = process_group ctx.scatter_dim = scatter_dim ctx.gather_dim = gather_dim ctx.world_size = dist.get_world_size(process_group) output = _all_to_all( input_, ctx.world_size, process_group, scatter_dim, gather_dim ) return output @staticmethod def backward(ctx, grad_output): grad_output = _all_to_all( grad_output, ctx.world_size, ctx.process_group, ctx.gather_dim, ctx.scatter_dim, ) return ( grad_output, None, None, None, ) def all_to_all( input_: torch.Tensor, scatter_dim: int = 2, gather_dim: int = 1, ): return _AllToAll.apply(input_, nccl_info.group, scatter_dim, gather_dim) class _AllGather(torch.autograd.Function): """All-gather communication with autograd support. Args: input_: input tensor dim: dimension along which to concatenate """ @staticmethod def forward(ctx, input_, dim): ctx.dim = dim world_size = nccl_info.sp_size group = nccl_info.group input_size = list(input_.size()) ctx.input_size = input_size[dim] tensor_list = [torch.empty_like(input_) for _ in range(world_size)] input_ = input_.contiguous() dist.all_gather(tensor_list, input_, group=group) output = torch.cat(tensor_list, dim=dim) return output @staticmethod def backward(ctx, grad_output): world_size = nccl_info.sp_size rank = nccl_info.rank_within_group dim = ctx.dim input_size = ctx.input_size sizes = [input_size] * world_size grad_input_list = torch.split(grad_output, sizes, dim=dim) grad_input = grad_input_list[rank] return grad_input, None def all_gather(input_: torch.Tensor, dim: int = 1): """Performs an all-gather operation on the input tensor along the specified dimension. Args: input_ (torch.Tensor): Input tensor of shape [B, H, S, D]. dim (int, optional): Dimension along which to concatenate. Defaults to 1. Returns: torch.Tensor: Output tensor after all-gather operation, concatenated along 'dim'. """ return _AllGather.apply(input_, dim) def prepare_sequence_parallel_data( hidden_states, encoder_hidden_states, attention_mask, encoder_attention_mask ):###not use fastvideo default sp data return ( hidden_states, encoder_hidden_states, attention_mask, encoder_attention_mask, ) if nccl_info.sp_size == 1: return ( hidden_states, encoder_hidden_states, attention_mask, encoder_attention_mask, ) def prepare( hidden_states, encoder_hidden_states, attention_mask, encoder_attention_mask ): hidden_states = all_to_all(hidden_states, scatter_dim=2, gather_dim=0) encoder_hidden_states = all_to_all( encoder_hidden_states, scatter_dim=1, gather_dim=0 ) attention_mask = all_to_all(attention_mask, scatter_dim=1, gather_dim=0) encoder_attention_mask = all_to_all( encoder_attention_mask, scatter_dim=1, gather_dim=0 ) return ( hidden_states, encoder_hidden_states, attention_mask, encoder_attention_mask, ) sp_size = nccl_info.sp_size # frame = hidden_states.shape[2] # print(2333333,frame)#13 # assert frame % sp_size == 0, "frame should be a multiple of sp_size" ( hidden_states, encoder_hidden_states, attention_mask, encoder_attention_mask, ) = prepare( hidden_states, encoder_hidden_states.repeat(1, sp_size, 1), attention_mask.repeat(1, sp_size, 1, 1), encoder_attention_mask.repeat(1, sp_size), ) return hidden_states, encoder_hidden_states, attention_mask, encoder_attention_mask def sp_parallel_dataloader_wrapper( dataloader, device, train_batch_size, sp_size, train_sp_batch_size ): while True: for data_item in dataloader: latents, cond, attn_mask, cond_mask = data_item latents = latents.to(device) cond = cond.to(device) attn_mask = attn_mask.to(device) cond_mask = cond_mask.to(device) frame = latents.shape[2] if frame == 1: yield latents, cond, attn_mask, cond_mask else: latents, cond, attn_mask, cond_mask = prepare_sequence_parallel_data( latents, cond, attn_mask, cond_mask ) assert ( train_batch_size * sp_size >= train_sp_batch_size ), "train_batch_size * sp_size should be greater than train_sp_batch_size" for iter in range(train_batch_size * sp_size // train_sp_batch_size): st_idx = iter * train_sp_batch_size ed_idx = (iter + 1) * train_sp_batch_size encoder_hidden_states = cond[st_idx:ed_idx] attention_mask = attn_mask[st_idx:ed_idx] encoder_attention_mask = cond_mask[st_idx:ed_idx] yield ( latents[st_idx:ed_idx], encoder_hidden_states, attention_mask, encoder_attention_mask, ) def _split_sequence_func(input_, pg: dist.ProcessGroup, dim: int, pad: int): # skip if only one rank involved world_size = dist.get_world_size(pg) rank = dist.get_rank(pg) if world_size == 1: return input_ if pad > 0: pad_size = list(input_.shape) pad_size[dim] = pad input_ = torch.cat([input_, torch.zeros(pad_size, dtype=input_.dtype, device=input_.device)], dim=dim) dim_size = input_.size(dim) assert dim_size % world_size == 0, f"dim_size ({dim_size}) is not divisible by world_size ({world_size})" tensor_list = torch.split(input_, dim_size // world_size, dim=dim) output = tensor_list[rank].contiguous() # if output.grad!=None:####must be None... # print(1111111,output.grad) return output def _gather_sequence_func(input_, pg: dist.ProcessGroup, dim: int, pad: int): # skip if only one rank involved input_ = input_.contiguous() world_size = dist.get_world_size(pg) dist.get_rank(pg) if world_size == 1: return input_ # all gather tensor_list = [torch.empty_like(input_) for _ in range(world_size)] assert input_.device.type == "cuda" torch.distributed.all_gather(tensor_list, input_, group=pg) # concat output = torch.cat(tensor_list, dim=dim) if pad > 0: output = output.narrow(dim, 0, output.size(dim) - pad) return output class _GatherForwardSplitBackward(torch.autograd.Function): """ Gather the input sequence. Args: input_: input matrix. process_group: process group. dim: dimension """ @staticmethod def symbolic(graph, input_): return _gather_sequence_func(input_) @staticmethod def forward(ctx, input_, process_group, dim, grad_scale, pad): ctx.process_group = process_group ctx.dim = dim ctx.grad_scale = grad_scale ctx.pad = pad return _gather_sequence_func(input_, process_group, dim, pad) @staticmethod def backward(ctx, grad_output): if ctx.grad_scale == "up": grad_output = grad_output * dist.get_world_size(ctx.process_group) elif ctx.grad_scale == "down": grad_output = grad_output / dist.get_world_size(ctx.process_group) return _split_sequence_func(grad_output, ctx.process_group, ctx.dim, ctx.pad), None, None, None, None class _SplitForwardGatherBackward(torch.autograd.Function): """ Split sequence. Args: input_: input matrix. process_group: parallel mode. dim: dimension """ @staticmethod def symbolic(graph, input_): return _split_sequence_func(input_) @staticmethod def forward(ctx, input_, process_group, dim, grad_scale, pad): ctx.process_group = process_group ctx.dim = dim ctx.grad_scale = grad_scale ctx.pad = pad return _split_sequence_func(input_, process_group, dim, pad) @staticmethod def backward(ctx, grad_output): if ctx.grad_scale == "up": grad_output = grad_output * dist.get_world_size(ctx.process_group) elif ctx.grad_scale == "down": grad_output = grad_output / dist.get_world_size(ctx.process_group) return _gather_sequence_func(grad_output, ctx.process_group, ctx.dim, ctx.pad), None, None, None, None # def split_sequence(input_, process_group, dim, grad_scale=1.0, pad=0): # return _SplitForwardGatherBackward.apply(input_, process_group, dim, grad_scale, pad) # def gather_sequence(input_, process_group, dim, grad_scale=1.0, pad=0): # return _GatherForwardSplitBackward.apply(input_, process_group, dim, grad_scale, pad) # if_print=0 def split_sequence(input_, dim, grad_scale=1.0, pad=0): # global if_print # if if_print==0: # # print(123232323, int(os.getenv("RANK", "0")), nccl_info.group) # print(123232323, int(os.getenv("RANK", "0")), dist.get_rank(nccl_info.group),dist.get_world_size(nccl_info.group)) # if_print=1 process_group=nccl_info.group return _SplitForwardGatherBackward.apply(input_, process_group, dim, grad_scale, pad) def gather_sequence(input_, dim, grad_scale=1.0, pad=0): process_group=nccl_info.group # print(process_group) return _GatherForwardSplitBackward.apply(input_, process_group, dim, grad_scale, pad) import torch import torch.distributed as dist import torch.nn.functional as F from einops import rearrange from torch import Tensor from torch.distributed import ProcessGroup def _all_to_all_func(input_, world_size, group, scatter_dim, gather_dim): input_list = [t.contiguous() for t in torch.tensor_split(input_, world_size, scatter_dim)] output_list = [torch.empty_like(input_list[0]) for _ in range(world_size)] dist.all_to_all(output_list, input_list, group=group) return torch.cat(output_list, dim=gather_dim).contiguous() class _AllToAll1(torch.autograd.Function): """All-to-all communication. Args: input_: input matrix process_group: communication group scatter_dim: scatter dimension gather_dim: gather dimension """ @staticmethod def forward(ctx, input_, process_group, scatter_dim, gather_dim): ctx.process_group = process_group ctx.scatter_dim = scatter_dim ctx.gather_dim = gather_dim world_size = dist.get_world_size(process_group) return _all_to_all_func(input_, world_size, process_group, scatter_dim, gather_dim) @staticmethod def backward(ctx, *grad_output): process_group = ctx.process_group scatter_dim = ctx.gather_dim gather_dim = ctx.scatter_dim return_grad = _AllToAll1.apply(*grad_output, process_group, scatter_dim, gather_dim) return (return_grad, None, None, None) # def all_to_all_comm(input_, process_group=None, scatter_dim=2, gather_dim=1): # return _AllToAll1.apply(input_, process_group, scatter_dim, gather_dim) def all_to_all_comm(input_,scatter_dim=2, gather_dim=1): process_group=nccl_info.group return _AllToAll1.apply(input_, process_group, scatter_dim, gather_dim)