Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
from sklearn.preprocessing import LabelEncoder
|
4 |
+
from xgboost import XGBClassifier
|
5 |
+
import pickle
|
6 |
+
|
7 |
+
model = pickle.load('crop_recommendation_model.pkl')
|
8 |
+
le = pickle.load('label_encoder.pkl')
|
9 |
+
|
10 |
+
def recommend_crop(nitrogen, phosphorus, potassium, temperature, humidity, ph, rainfall)
|
11 |
+
X_sample = nitrogen, phosphorus, potassium, temperature, humidity, ph, rainfall
|
12 |
+
|
13 |
+
# Predict crop recommendations
|
14 |
+
y_pred_sample = model.predict(X_sample)
|
15 |
+
|
16 |
+
# Decode the predictions and ground truth back to crop names
|
17 |
+
crops_pred = le.inverse_transform(y_pred_sample)
|
18 |
+
|
19 |
+
return crops_pred
|
20 |
+
|
21 |
+
# Create the Gradio interface
|
22 |
+
interface = gr.Interface(
|
23 |
+
fn=classify_potato_plant,
|
24 |
+
inputs=[gr.Number(label="Nitrogen - Ratio of Nitrogen in the soil"), gr.Number(label="Phosphorus - Ratio of Phosphorus in the soil"), gr.Number(label="Potassium - Ratio of Potassium in the soil"), gr.Number(label="Temperature - In degrees Celsius"), gr.Number(label="Humidity - Relative humidity in %"), gr.Number(label="pH Value - pH value of the soil"), gr.Number(label="Rainfall - Rainfall in mm")],
|
25 |
+
outputs=[gr.Textbox(label="Predicted Output"), gr.Textbox(label="Confidence Score")],
|
26 |
+
title="Acres - PPDC",
|
27 |
+
description="Acres PPDC, is our Potato Plant Disease Classification vision model, capable of accurately classifying potato plant disease, based on a single image."
|
28 |
+
)
|