Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
from tensorflow.keras.models import load_model | |
from tensorflow.keras.preprocessing import image | |
import tensorflow as tf | |
# Load the saved model | |
model = load_model('acres-ppdc-01.keras') | |
# Define the classes the model was trained on | |
class_labels = ['Potato___Early_blight', 'Potato___Late_blight', 'Potato___healthy'] | |
def classify_potato_plant(img): | |
# Preprocess the image for the model | |
img = img.resize((256, 256)) # Resize to the same size the model was trained on | |
img = image.img_to_array(img) | |
img = np.expand_dims(img, axis=0) | |
img = img / 255.0 # Normalize the image | |
# Make the prediction | |
predictions = model.predict(img) | |
predicted_class = np.argmax(predictions[0]) | |
confidence = predictions[0][predicted_class] | |
# Get the predicted class and confidence score | |
return class_labels[predicted_class], confidence | |
# Create the Gradio interface | |
interface = gr.Interface( | |
fn=classify_potato_plant, | |
inputs=gr.inputs.Image(type="pil"), | |
outputs=[gr.outputs.Label(num_top_classes=1), gr.outputs.Textbox(label="Confidence Score")] | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
interface.launch() |