Acres-PPDC / app.py
JohanBeytell's picture
Update app.py
eaab480 verified
import gradio as gr
import numpy as np
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
import tensorflow as tf
# Load the saved model
model = load_model('acres-ppdc-01.keras')
# Define the classes the model was trained on
class_labels = ['Potato___Early_blight', 'Potato___Late_blight', 'Potato___healthy']
def classify_potato_plant(img):
# Convert the image to a NumPy array for manipulation
img = np.array(img)
# Get the current width and height of the image
h, w, _ = img.shape
# Calculate the cropping coordinates to keep the center of the image
if h > w:
# If height is greater than width, crop the top and bottom
start = (h - w) // 2
img = img[start:start + w, :, :] # Crop to width
else:
# If width is greater than height, crop the left and right
start = (w - h) // 2
img = img[:, start:start + h, :] # Crop to height
# Convert back to PIL image after cropping
img = image.array_to_img(img)
# Preprocess the image for the model
img = img.resize((128, 128)) # Resize to the same size the model was trained on
img = image.img_to_array(img)
img = np.expand_dims(img, axis=0)
img = img / 255.0 # Normalize the image
# Make the prediction
predictions = model.predict(img)
predicted_class = np.argmax(predictions[0])
confidence = predictions[0][predicted_class]
model_output = "None"
if class_labels[predicted_class] == "Potato___Early_blight":
model_output = "Early blight"
elif class_labels[predicted_class] == "Potato___Late_blight":
model_output = "Late blight"
elif class_labels[predicted_class] == "Potato___healthy":
model_output = "Healthy"
return model_output, confidence
# Create the Gradio interface
interface = gr.Interface(
fn=classify_potato_plant,
inputs=gr.Image(type="pil"),
outputs=[gr.Textbox(label="Predicted Output"), gr.Textbox(label="Confidence Score")],
title="Acres - PPDC",
description="Acres PPDC, is our Potato Plant Disease Classification vision model, capable of accurately classifying potato plant disease, based on a single image."
)
# Launch the app
if __name__ == "__main__":
interface.launch()