JohanBeytell commited on
Commit
6f1c0ed
·
verified ·
1 Parent(s): 4165048

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -3
app.py CHANGED
@@ -21,15 +21,24 @@ def classify_potato_plant(img):
21
  predictions = model.predict(img)
22
  predicted_class = np.argmax(predictions[0])
23
  confidence = predictions[0][predicted_class]
 
24
 
25
- # Get the predicted class and confidence score
26
- return class_labels[predicted_class], confidence
 
 
 
 
 
 
27
 
28
  # Create the Gradio interface
29
  interface = gr.Interface(
30
  fn=classify_potato_plant,
31
  inputs=gr.Image(type="pil"),
32
- outputs=[gr.Label(num_top_classes=1), gr.Textbox(label="Confidence Score")]
 
 
33
  )
34
 
35
  # Launch the app
 
21
  predictions = model.predict(img)
22
  predicted_class = np.argmax(predictions[0])
23
  confidence = predictions[0][predicted_class]
24
+ model_output = "None"
25
 
26
+ if class_labels[predicted_class] == "Potato__Early_blight":
27
+ model_output = "Early blight"
28
+ elif class_labels[predicted_class] == "Potato__Late_blight":
29
+ model_output = "Late blight"
30
+ elif class_labels[predicted_class] == "Potate__healthy":
31
+ model_output = "Healthy"
32
+
33
+ return model_output, confidence
34
 
35
  # Create the Gradio interface
36
  interface = gr.Interface(
37
  fn=classify_potato_plant,
38
  inputs=gr.Image(type="pil"),
39
+ outputs=[gr.Label(num_top_classes=1), gr.Textbox(label="Confidence Score")],
40
+ title="Acres - PPDC",
41
+ description="Acres PPDC, is our Potato Plant Disease Classification vision model, capable of accurately classifying potato plant disease, based on a single image."
42
  )
43
 
44
  # Launch the app