Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,595 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import tensorflow as tf
|
4 |
+
from tensorflow.keras.models import load_model
|
5 |
+
from tensorflow.keras.preprocessing.image import img_to_array, array_to_img
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import matplotlib.cm as cm
|
8 |
+
import cv2
|
9 |
+
import gradio as gr
|
10 |
+
from PIL import Image
|
11 |
+
import io
|
12 |
+
import tempfile
|
13 |
+
from datetime import datetime
|
14 |
+
|
15 |
+
# Global variables
|
16 |
+
model = None
|
17 |
+
class_labels = {0: 'no', 1: 'yes'}
|
18 |
+
IMG_WIDTH, IMG_HEIGHT = 128, 128
|
19 |
+
|
20 |
+
# --- MODEL LOADING FUNCTION ---
|
21 |
+
def load_brain_tumor_model():
|
22 |
+
"""Load the brain tumor detection model from the file system"""
|
23 |
+
global model
|
24 |
+
|
25 |
+
# Common model file names to check
|
26 |
+
model_paths = [
|
27 |
+
'brain_tumor_classifier_v3.h5',
|
28 |
+
'model.h5',
|
29 |
+
'brain_tumor_model.h5',
|
30 |
+
'brain_tumor_classifier.h5'
|
31 |
+
]
|
32 |
+
|
33 |
+
for model_path in model_paths:
|
34 |
+
if os.path.exists(model_path):
|
35 |
+
try:
|
36 |
+
model = load_model(model_path)
|
37 |
+
print(f"β
Model loaded successfully from {model_path}")
|
38 |
+
return True
|
39 |
+
except Exception as e:
|
40 |
+
print(f"β Error loading model from {model_path}: {str(e)}")
|
41 |
+
continue
|
42 |
+
|
43 |
+
print("β No valid model file found. Please ensure your model is in the root directory.")
|
44 |
+
return False
|
45 |
+
|
46 |
+
# Load model on startup
|
47 |
+
model_loaded = load_brain_tumor_model()
|
48 |
+
|
49 |
+
# --- IMAGE PREPROCESSING FUNCTIONS ---
|
50 |
+
def preprocess_image(image, target_size=(128, 128)):
|
51 |
+
"""
|
52 |
+
Preprocess uploaded image for model prediction
|
53 |
+
"""
|
54 |
+
if image is None:
|
55 |
+
return None, "No image provided"
|
56 |
+
|
57 |
+
try:
|
58 |
+
# Convert to PIL Image if needed
|
59 |
+
if not isinstance(image, Image.Image):
|
60 |
+
image = Image.fromarray(image)
|
61 |
+
|
62 |
+
# Convert to RGB if needed
|
63 |
+
if image.mode != 'RGB':
|
64 |
+
image = image.convert('RGB')
|
65 |
+
|
66 |
+
# Resize image
|
67 |
+
image_resized = image.resize(target_size, Image.Resampling.LANCZOS)
|
68 |
+
|
69 |
+
# Convert to grayscale for display (optional)
|
70 |
+
image_gray = image_resized.convert('L').convert('RGB')
|
71 |
+
|
72 |
+
# Convert to array and normalize
|
73 |
+
img_array = img_to_array(image_resized) / 255.0
|
74 |
+
|
75 |
+
return image_resized, image_gray, img_array, "β
Image preprocessed successfully"
|
76 |
+
|
77 |
+
except Exception as e:
|
78 |
+
return None, None, None, f"β Error preprocessing image: {str(e)}"
|
79 |
+
|
80 |
+
# --- ENHANCED GRAD-CAM++ FUNCTIONS ---
|
81 |
+
def make_gradcampp_heatmap(img_array, model, last_conv_layer_name='last_conv_layer', pred_index=None):
|
82 |
+
"""
|
83 |
+
Creates an improved Grad-CAM++ heatmap with better numerical stability.
|
84 |
+
"""
|
85 |
+
if model is None:
|
86 |
+
return None
|
87 |
+
|
88 |
+
try:
|
89 |
+
grad_model = tf.keras.models.Model(
|
90 |
+
inputs=model.input,
|
91 |
+
outputs=[model.get_layer(last_conv_layer_name).output, model.output]
|
92 |
+
)
|
93 |
+
|
94 |
+
with tf.GradientTape(persistent=True) as tape1:
|
95 |
+
with tf.GradientTape(persistent=True) as tape2:
|
96 |
+
with tf.GradientTape() as tape3:
|
97 |
+
conv_outputs, predictions = grad_model(img_array)
|
98 |
+
if pred_index is None:
|
99 |
+
pred_index = tf.argmax(predictions[0])
|
100 |
+
class_channel = predictions[:, pred_index]
|
101 |
+
|
102 |
+
grads = tape3.gradient(class_channel, conv_outputs)
|
103 |
+
first_derivative = tape2.gradient(class_channel, conv_outputs)
|
104 |
+
second_derivative = tape1.gradient(first_derivative, conv_outputs)
|
105 |
+
|
106 |
+
del tape1, tape2
|
107 |
+
|
108 |
+
eps = 1e-8
|
109 |
+
alpha_num = second_derivative
|
110 |
+
alpha_denom = 2.0 * second_derivative + tf.reduce_sum(conv_outputs * grads, axis=[1, 2], keepdims=True)
|
111 |
+
alpha_denom = tf.where(tf.abs(alpha_denom) < eps, tf.ones_like(alpha_denom) * eps, alpha_denom)
|
112 |
+
alphas = alpha_num / alpha_denom
|
113 |
+
|
114 |
+
weights = tf.reduce_sum(alphas * tf.nn.relu(grads), axis=[1, 2])
|
115 |
+
weights = tf.nn.softmax(weights, axis=-1)
|
116 |
+
|
117 |
+
weights_reshaped = tf.reshape(weights, (1, 1, 1, -1))
|
118 |
+
heatmap = tf.reduce_sum(weights_reshaped * conv_outputs, axis=-1)
|
119 |
+
heatmap = tf.squeeze(heatmap, axis=0)
|
120 |
+
|
121 |
+
heatmap = tf.nn.relu(heatmap)
|
122 |
+
heatmap_np = heatmap.numpy()
|
123 |
+
|
124 |
+
heatmap_min = np.min(heatmap_np)
|
125 |
+
heatmap_max = np.max(heatmap_np)
|
126 |
+
if heatmap_max > heatmap_min:
|
127 |
+
heatmap_np = (heatmap_np - heatmap_min) / (heatmap_max - heatmap_min)
|
128 |
+
else:
|
129 |
+
heatmap_np = np.zeros_like(heatmap_np)
|
130 |
+
|
131 |
+
return heatmap_np
|
132 |
+
|
133 |
+
except Exception as e:
|
134 |
+
print(f"Error in Grad-CAM++: {str(e)}")
|
135 |
+
return None
|
136 |
+
|
137 |
+
def create_heatmap_visualizations(heatmap, img_shape):
|
138 |
+
"""Create multiple heatmap visualizations with different color schemes"""
|
139 |
+
heatmap_resized = cv2.resize(heatmap, (img_shape[1], img_shape[0]), interpolation=cv2.INTER_CUBIC)
|
140 |
+
heatmap_smooth = cv2.GaussianBlur(heatmap_resized, (5, 5), 0)
|
141 |
+
heatmap_enhanced = cv2.equalizeHist(np.uint8(255 * heatmap_smooth)) / 255.0
|
142 |
+
|
143 |
+
visualizations = {
|
144 |
+
'jet': {'heatmap': heatmap_smooth, 'colormap': 'jet', 'title': 'Jet Heatmap'},
|
145 |
+
'hot': {'heatmap': heatmap_smooth, 'colormap': 'hot', 'title': 'Hot Heatmap'},
|
146 |
+
'plasma': {'heatmap': heatmap_enhanced, 'colormap': 'plasma', 'title': 'Plasma Heatmap'},
|
147 |
+
'viridis': {'heatmap': heatmap_enhanced, 'colormap': 'viridis', 'title': 'Viridis Heatmap'},
|
148 |
+
'inferno': {'heatmap': heatmap_smooth, 'colormap': 'inferno', 'title': 'Inferno Heatmap'},
|
149 |
+
'cool': {'heatmap': heatmap_smooth, 'colormap': 'cool', 'title': 'Cool Heatmap'}
|
150 |
+
}
|
151 |
+
|
152 |
+
return visualizations
|
153 |
+
|
154 |
+
def superimpose_gradcam_enhanced(img, heatmap, colormap='jet', alpha=0.4):
|
155 |
+
"""Enhanced superimposition with different colormaps"""
|
156 |
+
if not isinstance(img, np.ndarray):
|
157 |
+
img = img_to_array(img)
|
158 |
+
if img.max() > 1.0:
|
159 |
+
img = img / 255.0
|
160 |
+
|
161 |
+
heatmap_resized = cv2.resize(heatmap, (img.shape[1], img.shape[0]), interpolation=cv2.INTER_CUBIC)
|
162 |
+
heatmap_uint8 = np.uint8(255 * heatmap_resized)
|
163 |
+
|
164 |
+
if hasattr(plt, 'colormaps'):
|
165 |
+
cmap = plt.colormaps[colormap]
|
166 |
+
else:
|
167 |
+
cmap = cm.get_cmap(colormap)
|
168 |
+
|
169 |
+
colored_heatmap = cmap(heatmap_uint8)[:, :, :3]
|
170 |
+
|
171 |
+
gamma = 2.2
|
172 |
+
img_gamma = np.power(img, 1/gamma)
|
173 |
+
colored_heatmap_gamma = np.power(colored_heatmap, 1/gamma)
|
174 |
+
|
175 |
+
blended_gamma = (colored_heatmap_gamma * alpha) + (img_gamma * (1 - alpha))
|
176 |
+
superimposed_img_float = np.power(blended_gamma, gamma)
|
177 |
+
superimposed_img_float = np.clip(superimposed_img_float, 0, 1)
|
178 |
+
|
179 |
+
return superimposed_img_float
|
180 |
+
|
181 |
+
# --- PREDICTION AND VISUALIZATION FUNCTIONS ---
|
182 |
+
def predict_brain_tumor(image):
|
183 |
+
"""Make prediction on uploaded image"""
|
184 |
+
if not model_loaded or model is None:
|
185 |
+
return "β Model not available. Please check if the model file exists in the space.", None, None
|
186 |
+
|
187 |
+
if image is None:
|
188 |
+
return "β No image provided.", None, None
|
189 |
+
|
190 |
+
try:
|
191 |
+
# Preprocess image
|
192 |
+
processed_img, gray_img, img_array, preprocess_msg = preprocess_image(image)
|
193 |
+
if processed_img is None:
|
194 |
+
return preprocess_msg, None, None
|
195 |
+
|
196 |
+
# Make prediction
|
197 |
+
img_batch = np.expand_dims(img_array, axis=0)
|
198 |
+
prediction = model.predict(img_batch, verbose=0)[0][0]
|
199 |
+
|
200 |
+
# Interpret results
|
201 |
+
predicted_class = int(round(prediction))
|
202 |
+
predicted_label = class_labels[predicted_class]
|
203 |
+
confidence = prediction if predicted_class == 1 else 1 - prediction
|
204 |
+
|
205 |
+
# Create result message
|
206 |
+
if predicted_class == 1:
|
207 |
+
status_emoji = "β οΈ"
|
208 |
+
status_text = "**TUMOR DETECTED**"
|
209 |
+
status_color = "red"
|
210 |
+
else:
|
211 |
+
status_emoji = "β
"
|
212 |
+
status_text = "**NO TUMOR DETECTED**"
|
213 |
+
status_color = "green"
|
214 |
+
|
215 |
+
result_msg = f"""
|
216 |
+
## π§ Brain Tumor Detection Results
|
217 |
+
|
218 |
+
**Prediction:** {predicted_label.upper()}
|
219 |
+
**Confidence:** {confidence:.1%}
|
220 |
+
**Raw Score:** {prediction:.4f}
|
221 |
+
|
222 |
+
{status_emoji} {status_text}
|
223 |
+
"""
|
224 |
+
|
225 |
+
return result_msg, processed_img, gray_img
|
226 |
+
|
227 |
+
except Exception as e:
|
228 |
+
return f"β Error during prediction: {str(e)}", None, None
|
229 |
+
|
230 |
+
def create_detailed_analysis(image):
|
231 |
+
"""Create comprehensive Grad-CAM++ analysis"""
|
232 |
+
if not model_loaded or model is None or image is None:
|
233 |
+
return "β Please upload an image for analysis."
|
234 |
+
|
235 |
+
try:
|
236 |
+
# Preprocess and predict
|
237 |
+
processed_img, gray_img, img_array, _ = preprocess_image(image)
|
238 |
+
img_batch = np.expand_dims(img_array, axis=0)
|
239 |
+
prediction = model.predict(img_batch, verbose=0)[0][0]
|
240 |
+
|
241 |
+
predicted_class = int(round(prediction))
|
242 |
+
predicted_label = class_labels[predicted_class]
|
243 |
+
confidence = prediction if predicted_class == 1 else 1 - prediction
|
244 |
+
|
245 |
+
# Generate heatmap
|
246 |
+
heatmap = make_gradcampp_heatmap(img_batch, model)
|
247 |
+
if heatmap is None:
|
248 |
+
return "β Error generating heatmap."
|
249 |
+
|
250 |
+
# Create visualizations
|
251 |
+
visualizations = create_heatmap_visualizations(heatmap, img_array.shape)
|
252 |
+
|
253 |
+
# Create comprehensive plot
|
254 |
+
fig = plt.figure(figsize=(20, 12))
|
255 |
+
color = 'green' if predicted_class == 0 else 'red'
|
256 |
+
fig.suptitle(f'Comprehensive Grad-CAM++ Analysis\nPredicted: {predicted_label.upper()} ({confidence:.2%})',
|
257 |
+
fontsize=16, fontweight='bold', color=color)
|
258 |
+
|
259 |
+
# Original image
|
260 |
+
plt.subplot(3, 5, 1)
|
261 |
+
plt.imshow(processed_img)
|
262 |
+
plt.title("Original Image", fontsize=12, fontweight='bold')
|
263 |
+
plt.axis('off')
|
264 |
+
|
265 |
+
# Different heatmap visualizations
|
266 |
+
viz_names = ['jet', 'hot', 'plasma', 'viridis']
|
267 |
+
for i, viz_name in enumerate(viz_names):
|
268 |
+
viz = visualizations[viz_name]
|
269 |
+
plt.subplot(3, 5, i + 2)
|
270 |
+
im = plt.imshow(viz['heatmap'], cmap=viz['colormap'])
|
271 |
+
plt.title(viz['title'], fontsize=12)
|
272 |
+
plt.axis('off')
|
273 |
+
plt.colorbar(im, fraction=0.046, pad=0.04)
|
274 |
+
|
275 |
+
# More heatmap styles
|
276 |
+
viz_names2 = ['inferno', 'cool']
|
277 |
+
for i, viz_name in enumerate(viz_names2):
|
278 |
+
viz = visualizations[viz_name]
|
279 |
+
plt.subplot(3, 5, i + 6)
|
280 |
+
im = plt.imshow(viz['heatmap'], cmap=viz['colormap'])
|
281 |
+
plt.title(viz['title'], fontsize=12)
|
282 |
+
plt.axis('off')
|
283 |
+
plt.colorbar(im, fraction=0.046, pad=0.04)
|
284 |
+
|
285 |
+
# Attention profile
|
286 |
+
plt.subplot(3, 5, 8)
|
287 |
+
attention_profile = np.mean(heatmap, axis=1)
|
288 |
+
plt.plot(attention_profile, range(len(attention_profile)), 'b-', linewidth=2)
|
289 |
+
plt.title('Vertical Attention Profile', fontsize=12)
|
290 |
+
plt.xlabel('Attention Intensity')
|
291 |
+
plt.ylabel('Image Height')
|
292 |
+
plt.gca().invert_yaxis()
|
293 |
+
plt.grid(True, alpha=0.3)
|
294 |
+
|
295 |
+
# Statistics
|
296 |
+
plt.subplot(3, 5, 9)
|
297 |
+
stats_text = f"""Heatmap Statistics:
|
298 |
+
Mean: {np.mean(heatmap):.3f}
|
299 |
+
Std: {np.std(heatmap):.3f}
|
300 |
+
Max: {np.max(heatmap):.3f}
|
301 |
+
Min: {np.min(heatmap):.3f}
|
302 |
+
|
303 |
+
Prediction:
|
304 |
+
Confidence: {confidence:.1%}
|
305 |
+
Raw Score: {prediction:.4f}
|
306 |
+
Class: {predicted_label}"""
|
307 |
+
|
308 |
+
plt.text(0.1, 0.5, stats_text, transform=plt.gca().transAxes, fontsize=10,
|
309 |
+
verticalalignment='center', bbox=dict(boxstyle="round,pad=0.3", facecolor="lightblue"))
|
310 |
+
plt.axis('off')
|
311 |
+
|
312 |
+
# Superimposed views
|
313 |
+
superimposed_colormaps = ['jet', 'hot', 'plasma', 'viridis', 'inferno']
|
314 |
+
for i, cmap_name in enumerate(superimposed_colormaps):
|
315 |
+
superimposed_img = superimpose_gradcam_enhanced(img_array, heatmap, colormap=cmap_name, alpha=0.4)
|
316 |
+
plt.subplot(3, 5, i + 11)
|
317 |
+
plt.imshow(superimposed_img)
|
318 |
+
plt.title(f'Superimposed ({cmap_name.title()})', fontsize=12)
|
319 |
+
plt.axis('off')
|
320 |
+
|
321 |
+
plt.tight_layout()
|
322 |
+
plt.subplots_adjust(top=0.92)
|
323 |
+
|
324 |
+
# Save to temporary file and return
|
325 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png')
|
326 |
+
plt.savefig(temp_file.name, dpi=300, bbox_inches='tight')
|
327 |
+
plt.close()
|
328 |
+
|
329 |
+
return temp_file.name
|
330 |
+
|
331 |
+
except Exception as e:
|
332 |
+
return f"β Error creating detailed analysis: {str(e)}"
|
333 |
+
|
334 |
+
def create_quick_analysis(image):
|
335 |
+
"""Create quick 2x3 comparison view"""
|
336 |
+
if not model_loaded or model is None or image is None:
|
337 |
+
return "β Please upload an image for analysis."
|
338 |
+
|
339 |
+
try:
|
340 |
+
# Preprocess and predict
|
341 |
+
processed_img, gray_img, img_array, _ = preprocess_image(image)
|
342 |
+
img_batch = np.expand_dims(img_array, axis=0)
|
343 |
+
prediction = model.predict(img_batch, verbose=0)[0][0]
|
344 |
+
|
345 |
+
predicted_class = int(round(prediction))
|
346 |
+
predicted_label = class_labels[predicted_class]
|
347 |
+
confidence = prediction if predicted_class == 1 else 1 - prediction
|
348 |
+
|
349 |
+
# Generate heatmap
|
350 |
+
heatmap = make_gradcampp_heatmap(img_batch, model)
|
351 |
+
if heatmap is None:
|
352 |
+
return "β Error generating heatmap."
|
353 |
+
|
354 |
+
# Create quick visualization
|
355 |
+
fig, axes = plt.subplots(2, 3, figsize=(15, 10))
|
356 |
+
color = 'green' if predicted_class == 0 else 'red'
|
357 |
+
fig.suptitle(f'Quick Grad-CAM++ Analysis | Predicted: {predicted_label.upper()} ({confidence:.2%})',
|
358 |
+
fontsize=14, fontweight='bold', color=color)
|
359 |
+
|
360 |
+
# Original image
|
361 |
+
axes[0, 0].imshow(processed_img)
|
362 |
+
axes[0, 0].set_title("Original Image")
|
363 |
+
axes[0, 0].axis('off')
|
364 |
+
|
365 |
+
# Jet heatmap
|
366 |
+
heatmap_resized = cv2.resize(heatmap, (IMG_WIDTH, IMG_HEIGHT))
|
367 |
+
im1 = axes[0, 1].imshow(heatmap_resized, cmap='jet')
|
368 |
+
axes[0, 1].set_title("Jet Heatmap")
|
369 |
+
axes[0, 1].axis('off')
|
370 |
+
plt.colorbar(im1, ax=axes[0, 1], fraction=0.046)
|
371 |
+
|
372 |
+
# Plasma heatmap
|
373 |
+
im2 = axes[0, 2].imshow(heatmap_resized, cmap='plasma')
|
374 |
+
axes[0, 2].set_title("Plasma Heatmap")
|
375 |
+
axes[0, 2].axis('off')
|
376 |
+
plt.colorbar(im2, ax=axes[0, 2], fraction=0.046)
|
377 |
+
|
378 |
+
# Superimposed views
|
379 |
+
superimposed_jet = superimpose_gradcam_enhanced(img_array, heatmap, 'jet')
|
380 |
+
axes[1, 0].imshow(superimposed_jet)
|
381 |
+
axes[1, 0].set_title("Superimposed (Jet)")
|
382 |
+
axes[1, 0].axis('off')
|
383 |
+
|
384 |
+
superimposed_hot = superimpose_gradcam_enhanced(img_array, heatmap, 'hot')
|
385 |
+
axes[1, 1].imshow(superimposed_hot)
|
386 |
+
axes[1, 1].set_title("Superimposed (Hot)")
|
387 |
+
axes[1, 1].axis('off')
|
388 |
+
|
389 |
+
superimposed_viridis = superimpose_gradcam_enhanced(img_array, heatmap, 'viridis')
|
390 |
+
axes[1, 2].imshow(superimposed_viridis)
|
391 |
+
axes[1, 2].set_title("Superimposed (Viridis)")
|
392 |
+
axes[1, 2].axis('off')
|
393 |
+
|
394 |
+
plt.tight_layout()
|
395 |
+
|
396 |
+
# Save to temporary file and return
|
397 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png')
|
398 |
+
plt.savefig(temp_file.name, dpi=300, bbox_inches='tight')
|
399 |
+
plt.close()
|
400 |
+
|
401 |
+
return temp_file.name
|
402 |
+
|
403 |
+
except Exception as e:
|
404 |
+
return f"β Error creating quick analysis: {str(e)}"
|
405 |
+
|
406 |
+
# --- GRADIO APP INTERFACE ---
|
407 |
+
def create_gradio_app():
|
408 |
+
"""Create the main Gradio interface"""
|
409 |
+
|
410 |
+
# Custom CSS for better styling
|
411 |
+
custom_css = """
|
412 |
+
.gradio-container {
|
413 |
+
font-family: 'Arial', sans-serif;
|
414 |
+
}
|
415 |
+
.main-header {
|
416 |
+
text-align: center;
|
417 |
+
background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
|
418 |
+
padding: 2rem;
|
419 |
+
border-radius: 10px;
|
420 |
+
color: white;
|
421 |
+
margin-bottom: 2rem;
|
422 |
+
}
|
423 |
+
.status-positive {
|
424 |
+
color: #22c55e;
|
425 |
+
font-weight: bold;
|
426 |
+
}
|
427 |
+
.status-negative {
|
428 |
+
color: #ef4444;
|
429 |
+
font-weight: bold;
|
430 |
+
}
|
431 |
+
"""
|
432 |
+
|
433 |
+
with gr.Blocks(title="π§ Brain Tumor Detection - Grad-CAM++", theme=gr.themes.Soft(), css=custom_css) as app:
|
434 |
+
|
435 |
+
gr.HTML("""
|
436 |
+
<div class="main-header">
|
437 |
+
<h1>π§ Brain Tumor Detection with Enhanced Grad-CAM++</h1>
|
438 |
+
<p>Advanced AI-powered MRI analysis with explainable attention visualization</p>
|
439 |
+
</div>
|
440 |
+
""")
|
441 |
+
|
442 |
+
# Model status display
|
443 |
+
model_status = "β
Model loaded successfully" if model_loaded else "β Model not available"
|
444 |
+
gr.Markdown(f"**Model Status:** {model_status}")
|
445 |
+
|
446 |
+
if not model_loaded:
|
447 |
+
gr.Markdown("β οΈ **Warning**: Model file not found. Please ensure your trained model (.h5) is in the space's root directory.")
|
448 |
+
|
449 |
+
gr.Markdown("""
|
450 |
+
## π How to Use:
|
451 |
+
1. **Upload an MRI brain scan** (JPEG, PNG, or other image formats)
|
452 |
+
2. **View automatic preprocessing** and prediction results
|
453 |
+
3. **Choose analysis type**: Quick for rapid assessment, Detailed for comprehensive visualization
|
454 |
+
4. **Download results** for further analysis or documentation
|
455 |
+
""")
|
456 |
+
|
457 |
+
with gr.Row():
|
458 |
+
with gr.Column(scale=2):
|
459 |
+
input_image = gr.Image(
|
460 |
+
label="π€ Upload MRI Brain Scan",
|
461 |
+
type="pil",
|
462 |
+
height=400
|
463 |
+
)
|
464 |
+
|
465 |
+
with gr.Column(scale=1):
|
466 |
+
gr.Markdown("### π Preprocessing Preview")
|
467 |
+
processed_image = gr.Image(
|
468 |
+
label="Processed (128x128 RGB)",
|
469 |
+
height=180,
|
470 |
+
interactive=False
|
471 |
+
)
|
472 |
+
grayscale_image = gr.Image(
|
473 |
+
label="Grayscale Preview",
|
474 |
+
height=180,
|
475 |
+
interactive=False
|
476 |
+
)
|
477 |
+
|
478 |
+
# Prediction results
|
479 |
+
gr.Markdown("## π― Prediction Results")
|
480 |
+
prediction_output = gr.Markdown(value="*Upload an image to see predictions...*")
|
481 |
+
|
482 |
+
# Analysis buttons
|
483 |
+
gr.Markdown("## π¬ Grad-CAM++ Analysis")
|
484 |
+
gr.Markdown("Choose your preferred analysis type:")
|
485 |
+
|
486 |
+
with gr.Row():
|
487 |
+
quick_btn = gr.Button(
|
488 |
+
"β‘ Quick Analysis (2x3 Grid)",
|
489 |
+
variant="secondary",
|
490 |
+
size="lg",
|
491 |
+
scale=1
|
492 |
+
)
|
493 |
+
detailed_btn = gr.Button(
|
494 |
+
"π¬ Detailed Analysis (3x5 Grid)",
|
495 |
+
variant="primary",
|
496 |
+
size="lg",
|
497 |
+
scale=1
|
498 |
+
)
|
499 |
+
|
500 |
+
# Analysis output
|
501 |
+
analysis_output = gr.Image(
|
502 |
+
label="π Analysis Results",
|
503 |
+
height=700,
|
504 |
+
interactive=False,
|
505 |
+
show_download_button=True
|
506 |
+
)
|
507 |
+
|
508 |
+
# Information sections
|
509 |
+
with gr.Row():
|
510 |
+
with gr.Column():
|
511 |
+
gr.Markdown("""
|
512 |
+
### β‘ Quick Analysis Features:
|
513 |
+
- **2x3 Grid Layout** for rapid evaluation
|
514 |
+
- **Original Image** with preprocessing
|
515 |
+
- **Jet & Plasma Heatmaps** with colorbars
|
516 |
+
- **3 Superimposed Views** (Jet, Hot, Viridis)
|
517 |
+
- **Fast Processing** (~2-3 seconds)
|
518 |
+
- **Perfect for screening** multiple images
|
519 |
+
""")
|
520 |
+
|
521 |
+
with gr.Column():
|
522 |
+
gr.Markdown("""
|
523 |
+
### π¬ Detailed Analysis Features:
|
524 |
+
- **3x5 Grid Layout** for comprehensive analysis
|
525 |
+
- **6 Heatmap Color Schemes** with individual colorbars
|
526 |
+
- **Attention Profile Plot** showing vertical focus
|
527 |
+
- **Statistical Analysis Panel** with quantitative metrics
|
528 |
+
- **5 Enhanced Superimposed Views** with gamma correction
|
529 |
+
- **Clinical-grade visualization** for detailed examination
|
530 |
+
""")
|
531 |
+
|
532 |
+
gr.Markdown("""
|
533 |
+
---
|
534 |
+
### π¨ Color Scheme Guide:
|
535 |
+
- **π₯ Jet**: Classic blue β green β yellow β red progression (high contrast)
|
536 |
+
- **π Hot**: Black β red β orange β yellow (heat-like visualization)
|
537 |
+
- **π Plasma**: Purple β pink β yellow (scientifically accurate)
|
538 |
+
- **πΏ Viridis**: Dark blue β green β yellow (perceptually uniform)
|
539 |
+
- **π₯ Inferno**: Black β purple β red β yellow (high contrast heat)
|
540 |
+
- **βοΈ Cool**: Cyan β blue β magenta (cool color palette)
|
541 |
+
|
542 |
+
### π Understanding the Results:
|
543 |
+
- **Bright regions** in heatmaps indicate areas the AI model focuses on
|
544 |
+
- **Different color schemes** can reveal different aspects of attention patterns
|
545 |
+
- **Confidence scores** above 80% are generally considered reliable
|
546 |
+
- **Superimposed views** help correlate AI attention with anatomical structures
|
547 |
+
""")
|
548 |
+
|
549 |
+
# Footer
|
550 |
+
gr.Markdown("""
|
551 |
+
---
|
552 |
+
**β οΈ Medical Disclaimer**: This tool is for research and educational purposes only.
|
553 |
+
Always consult qualified medical professionals for clinical diagnosis and treatment decisions.
|
554 |
+
""")
|
555 |
+
|
556 |
+
# Event handlers
|
557 |
+
def predict_and_update(image):
|
558 |
+
result, processed, grayscale = predict_brain_tumor(image)
|
559 |
+
return result, processed, grayscale
|
560 |
+
|
561 |
+
def quick_analysis_handler(image):
|
562 |
+
if not model_loaded:
|
563 |
+
return None
|
564 |
+
return create_quick_analysis(image)
|
565 |
+
|
566 |
+
def detailed_analysis_handler(image):
|
567 |
+
if not model_loaded:
|
568 |
+
return None
|
569 |
+
return create_detailed_analysis(image)
|
570 |
+
|
571 |
+
# Connect event handlers
|
572 |
+
input_image.change(
|
573 |
+
fn=predict_and_update,
|
574 |
+
inputs=[input_image],
|
575 |
+
outputs=[prediction_output, processed_image, grayscale_image]
|
576 |
+
)
|
577 |
+
|
578 |
+
quick_btn.click(
|
579 |
+
fn=quick_analysis_handler,
|
580 |
+
inputs=[input_image],
|
581 |
+
outputs=[analysis_output]
|
582 |
+
)
|
583 |
+
|
584 |
+
detailed_btn.click(
|
585 |
+
fn=detailed_analysis_handler,
|
586 |
+
inputs=[input_image],
|
587 |
+
outputs=[analysis_output]
|
588 |
+
)
|
589 |
+
|
590 |
+
return app
|
591 |
+
|
592 |
+
# --- LAUNCH THE APP ---
|
593 |
+
if __name__ == "__main__":
|
594 |
+
app = create_gradio_app()
|
595 |
+
app.launch()
|