Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,6 @@ import sentencepiece as spm
|
|
2 |
import numpy as np
|
3 |
import tensorflow as tf
|
4 |
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
5 |
-
import re
|
6 |
from valx import detect_profanity, detect_hate_speech
|
7 |
import gradio as gr
|
8 |
|
@@ -13,31 +12,27 @@ model = tf.keras.models.load_model("dungen_dev_preview_model.keras")
|
|
13 |
|
14 |
max_seq_len = 25
|
15 |
|
16 |
-
def generate_text(seed_text, next_words=
|
17 |
-
seed_text = seed_text.
|
18 |
hate_speech = detect_hate_speech(seed_text)
|
19 |
profanity = detect_profanity([seed_text], language='All')
|
20 |
-
|
21 |
-
if
|
22 |
gr.Warning("Profanity detected in the prompt, using the default prompt.")
|
23 |
seed_text = 'game name | '
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
elif hate_speech == ['Offensive Speech']:
|
29 |
-
gr.Warning('Offensive speech detected in the seed text, using an empty seed text.')
|
30 |
-
seed_text = 'game name | '
|
31 |
-
|
32 |
generated_text = seed_text
|
33 |
for _ in range(next_words):
|
34 |
token_list = sp.encode_as_ids(generated_text)
|
35 |
token_list = pad_sequences([token_list], maxlen=max_seq_len - 1, padding='pre')
|
36 |
predicted = model.predict(token_list, verbose=0)[0]
|
37 |
|
38 |
-
# Apply temperature
|
39 |
predicted = np.asarray(predicted).astype("float64")
|
40 |
-
predicted = np.log(predicted) / temperature
|
41 |
exp_preds = np.exp(predicted)
|
42 |
predicted = exp_preds / np.sum(exp_preds)
|
43 |
|
@@ -49,30 +44,25 @@ def generate_text(seed_text, next_words=5, temperature=1.0):
|
|
49 |
break
|
50 |
|
51 |
decoded = sp.decode_pieces(sp.encode_as_pieces(generated_text))
|
52 |
-
decoded = decoded.replace("</s>", "")
|
53 |
-
decoded = decoded.replace("<unk>", "")
|
54 |
-
cleaned_text = decoded.strip()
|
55 |
-
|
56 |
-
hate_speech2 = detect_hate_speech(cleaned_text)
|
57 |
-
profanity2 = detect_profanity([cleaned_text], language='All')
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
cleaned_text = 'Flagged Output'
|
62 |
-
else:
|
63 |
-
if hate_speech2 == ['Hate Speech']:
|
64 |
-
gr.Warning('Flagged potentially harmful output.')
|
65 |
-
cleaned_text = 'Flagged Output'
|
66 |
-
elif hate_speech2 == ['Offensive Speech']:
|
67 |
-
gr.Warning('Flagged potentially harmful output.')
|
68 |
-
cleaned_text = 'Flagged Output'
|
69 |
|
70 |
-
|
|
|
|
|
|
|
|
|
71 |
|
72 |
demo = gr.Interface(
|
73 |
fn=generate_text,
|
74 |
-
inputs=[
|
75 |
-
|
|
|
|
|
|
|
|
|
76 |
title='Dungen Dev - Name Generator',
|
77 |
description='A prompt-based name generator for game developers.'
|
78 |
)
|
|
|
2 |
import numpy as np
|
3 |
import tensorflow as tf
|
4 |
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
|
|
5 |
from valx import detect_profanity, detect_hate_speech
|
6 |
import gradio as gr
|
7 |
|
|
|
12 |
|
13 |
max_seq_len = 25
|
14 |
|
15 |
+
def generate_text(seed_text, next_words=30, temperature=0.5):
|
16 |
+
seed_text = seed_text.lower() + ' | '
|
17 |
hate_speech = detect_hate_speech(seed_text)
|
18 |
profanity = detect_profanity([seed_text], language='All')
|
19 |
+
|
20 |
+
if profanity: # Simplified check
|
21 |
gr.Warning("Profanity detected in the prompt, using the default prompt.")
|
22 |
seed_text = 'game name | '
|
23 |
+
elif hate_speech and hate_speech[0] in ['Hate Speech', 'Offensive Speech']: # Simplified check
|
24 |
+
gr.Warning('Harmful speech detected in the seed text, using default prompt.')
|
25 |
+
seed_text = 'game name | '
|
26 |
+
|
|
|
|
|
|
|
|
|
27 |
generated_text = seed_text
|
28 |
for _ in range(next_words):
|
29 |
token_list = sp.encode_as_ids(generated_text)
|
30 |
token_list = pad_sequences([token_list], maxlen=max_seq_len - 1, padding='pre')
|
31 |
predicted = model.predict(token_list, verbose=0)[0]
|
32 |
|
33 |
+
# Apply temperature with numerical stability fix
|
34 |
predicted = np.asarray(predicted).astype("float64")
|
35 |
+
predicted = np.log(predicted + 1e-8) / temperature # Add small epsilon to prevent log(0)
|
36 |
exp_preds = np.exp(predicted)
|
37 |
predicted = exp_preds / np.sum(exp_preds)
|
38 |
|
|
|
44 |
break
|
45 |
|
46 |
decoded = sp.decode_pieces(sp.encode_as_pieces(generated_text))
|
47 |
+
decoded = decoded.replace("</s>", "").replace("<unk>", "").strip() # Combined replace and strip
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
hate_speech2 = detect_hate_speech(decoded)
|
50 |
+
profanity2 = detect_profanity([decoded], language='All')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
if profanity2 or (hate_speech2 and hate_speech2[0] in ['Hate Speech', 'Offensive Speech']): #Combined check
|
53 |
+
gr.Warning("Flagged potentially harmful output.")
|
54 |
+
decoded = 'Flagged Output'
|
55 |
+
|
56 |
+
return decoded
|
57 |
|
58 |
demo = gr.Interface(
|
59 |
fn=generate_text,
|
60 |
+
inputs=[
|
61 |
+
gr.Textbox(label="Prompt", value="a female character name", max_lines=1),
|
62 |
+
gr.Slider(1, 100, step=1, label='Next Words', value=30),
|
63 |
+
gr.Slider(0.1, 1, value=0.5, label='Temperature', info='Controls randomness of generation, higher values = more creative, lower values = more probalistic')
|
64 |
+
],
|
65 |
+
outputs=gr.Textbox(label="Generated Names"), #Simplified output
|
66 |
title='Dungen Dev - Name Generator',
|
67 |
description='A prompt-based name generator for game developers.'
|
68 |
)
|