Spaces:
Sleeping
Sleeping
Removed flagging
Browse files
app.py
CHANGED
@@ -1,93 +1,9 @@
|
|
1 |
-
# import sentencepiece as spm
|
2 |
-
# import numpy as np
|
3 |
-
# import tensorflow as tf
|
4 |
-
# from tensorflow.keras.preprocessing.sequence import pad_sequences
|
5 |
-
# from valx import detect_profanity, detect_hate_speech
|
6 |
-
# import gradio as gr
|
7 |
-
|
8 |
-
# sp = spm.SentencePieceProcessor()
|
9 |
-
# sp.Load("dungen_dev_preview.model")
|
10 |
-
|
11 |
-
# model = tf.keras.models.load_model("dungen_dev_preview_model.keras")
|
12 |
-
|
13 |
-
# max_seq_len = 25
|
14 |
-
|
15 |
-
# def generate_text(seed_text, next_words=30, temperature=0.5):
|
16 |
-
# seed_text = seed_text.strip().lower()
|
17 |
-
|
18 |
-
# if "|" in seed_text:
|
19 |
-
# gr.Warning("The prompt should not contain the '|' character. Using default prompt.")
|
20 |
-
# seed_text = 'game name | '
|
21 |
-
# elif detect_profanity([seed_text], language='All'):
|
22 |
-
# gr.Warning("Profanity detected in the prompt, using the default prompt.")
|
23 |
-
# seed_text = 'game name | '
|
24 |
-
# elif (hate_speech_result := detect_hate_speech(seed_text)) and hate_speech_result[0] in ['Hate Speech', 'Offensive Speech']:
|
25 |
-
# gr.Warning('Harmful speech detected in the prompt, using default prompt.')
|
26 |
-
# seed_text = 'game name | '
|
27 |
-
# else:
|
28 |
-
# seed_text += ' | '
|
29 |
-
|
30 |
-
# generated_text = seed_text
|
31 |
-
# if generated_text != 'game name | ': # only generate if not the default prompt
|
32 |
-
# for _ in range(next_words):
|
33 |
-
# token_list = sp.encode_as_ids(generated_text)
|
34 |
-
# token_list = pad_sequences([token_list], maxlen=max_seq_len - 1, padding='pre')
|
35 |
-
# predicted = model.predict(token_list, verbose=0)[0]
|
36 |
-
|
37 |
-
# predicted = np.asarray(predicted).astype("float64")
|
38 |
-
# predicted = np.log(predicted + 1e-8) / temperature
|
39 |
-
# exp_preds = np.exp(predicted)
|
40 |
-
# predicted = exp_preds / np.sum(exp_preds)
|
41 |
-
|
42 |
-
# next_index = np.random.choice(len(predicted), p=predicted)
|
43 |
-
# next_token = sp.id_to_piece(next_index)
|
44 |
-
# generated_text += next_token
|
45 |
-
|
46 |
-
# if next_token.endswith('</s>') or next_token.endswith('<unk>'):
|
47 |
-
# break
|
48 |
-
|
49 |
-
# decoded = sp.decode_pieces(sp.encode_as_pieces(generated_text))
|
50 |
-
# decoded = decoded.replace("</s>", "").replace("<unk>", "").strip()
|
51 |
-
|
52 |
-
# if '|' in decoded:
|
53 |
-
# decoded = decoded.split('|', 1)[1].strip()
|
54 |
-
|
55 |
-
# if any(detect_profanity([decoded], language='All')) or (hate_speech_result := detect_hate_speech(decoded)) and hate_speech_result[0] in ['Hate Speech', 'Offensive Speech']:
|
56 |
-
# gr.Warning("Flagged potentially harmful output.")
|
57 |
-
# decoded = 'Flagged Output'
|
58 |
-
|
59 |
-
# return decoded
|
60 |
-
|
61 |
-
# demo = gr.Interface(
|
62 |
-
# fn=generate_text,
|
63 |
-
# inputs=[
|
64 |
-
# gr.Textbox(label="Prompt", value="a female character name", max_lines=1),
|
65 |
-
# gr.Slider(1, 100, step=1, label='Next Words', value=30),
|
66 |
-
# gr.Slider(0.1, 1, value=0.5, label='Temperature', info='Controls randomness of generation, higher values = more creative, lower values = more probalistic')
|
67 |
-
# ],
|
68 |
-
# outputs=gr.Textbox(label="Generated Names"),
|
69 |
-
# title='Dungen Dev - Name Generator',
|
70 |
-
# description='A prompt-based name generator for game developers. Dungen Dev is an experimental model, and may produce outputs that are inappropriate, biased, or potentially harmful and inaccurate. Caution is advised.',
|
71 |
-
# examples=[
|
72 |
-
# ["a male character name", 30, 0.5],
|
73 |
-
# ["a futuristic city name", 30, 0.5],
|
74 |
-
# ["an item name", 30, 0.5],
|
75 |
-
# ["a dark and mysterious forest name", 30, 0.5],
|
76 |
-
# ["an evil character name", 30, 0.5]
|
77 |
-
# ]
|
78 |
-
# )
|
79 |
-
|
80 |
-
# demo.launch()
|
81 |
-
|
82 |
import sentencepiece as spm
|
83 |
import numpy as np
|
84 |
import tensorflow as tf
|
85 |
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
86 |
from valx import detect_profanity, detect_hate_speech
|
87 |
import gradio as gr
|
88 |
-
from datasets import load_dataset, DatasetDict, Dataset
|
89 |
-
from huggingface_hub import HfApi
|
90 |
-
from datetime import datetime
|
91 |
|
92 |
sp = spm.SentencePieceProcessor()
|
93 |
sp.Load("dungen_dev_preview.model")
|
@@ -112,7 +28,7 @@ def generate_text(seed_text, next_words=30, temperature=0.5):
|
|
112 |
seed_text += ' | '
|
113 |
|
114 |
generated_text = seed_text
|
115 |
-
if generated_text != 'game name | ':
|
116 |
for _ in range(next_words):
|
117 |
token_list = sp.encode_as_ids(generated_text)
|
118 |
token_list = pad_sequences([token_list], maxlen=max_seq_len - 1, padding='pre')
|
@@ -140,57 +56,16 @@ def generate_text(seed_text, next_words=30, temperature=0.5):
|
|
140 |
gr.Warning("Flagged potentially harmful output.")
|
141 |
decoded = 'Flagged Output'
|
142 |
|
143 |
-
return decoded
|
144 |
-
|
145 |
-
# Custom flagging callback to use the existing flagging logic
|
146 |
-
class CustomFlaggingCallback(gr.FlaggingCallback):
|
147 |
-
def __init__(self, dataset_id):
|
148 |
-
self.dataset_id = dataset_id
|
149 |
-
|
150 |
-
def flag(self, flag_data, flag_option=None, username=None):
|
151 |
-
prompt, generated_text, next_words, temperature = flag_data
|
152 |
-
timestamp = datetime.now().isoformat()
|
153 |
-
|
154 |
-
# Custom flagging logic
|
155 |
-
try:
|
156 |
-
dataset = load_dataset(self.dataset_id)
|
157 |
-
except:
|
158 |
-
dataset = DatasetDict()
|
159 |
-
|
160 |
-
new_data = [{
|
161 |
-
"Prompt": prompt,
|
162 |
-
"Generated Text": generated_text,
|
163 |
-
"Next Words": next_words,
|
164 |
-
"Temperature": temperature,
|
165 |
-
"Timestamp": timestamp
|
166 |
-
}]
|
167 |
-
|
168 |
-
new_dataset = Dataset.from_list(new_data)
|
169 |
-
|
170 |
-
if "train" in dataset:
|
171 |
-
dataset["train"] = concatenate_datasets([dataset["train"], new_dataset]) # Append to existing train
|
172 |
-
else:
|
173 |
-
dataset["train"] = new_dataset # Create the train split
|
174 |
-
|
175 |
-
dataset.push_to_hub(self.dataset_id)
|
176 |
-
return "Output flagged successfully."
|
177 |
-
|
178 |
-
# Initialize the custom flagging callback
|
179 |
-
dataset_id = "InfinitodeLTD/DungenDev-FlaggedOutputs"
|
180 |
-
custom_flag_callback = CustomFlaggingCallback(dataset_id)
|
181 |
|
182 |
demo = gr.Interface(
|
183 |
fn=generate_text,
|
184 |
inputs=[
|
185 |
gr.Textbox(label="Prompt", value="a female character name", max_lines=1),
|
186 |
gr.Slider(1, 100, step=1, label='Next Words', value=30),
|
187 |
-
gr.Slider(0.1, 1, value=0.5, label='Temperature', info='Controls randomness of generation, higher values = more creative, lower values = more
|
188 |
-
],
|
189 |
-
outputs=[
|
190 |
-
gr.Textbox(label="Generated Name", interactive=True),
|
191 |
-
# gr.Button("Flag Output", interactive=False, elem_id="flag-button")
|
192 |
],
|
193 |
-
|
194 |
title='Dungen Dev - Name Generator',
|
195 |
description='A prompt-based name generator for game developers. Dungen Dev is an experimental model, and may produce outputs that are inappropriate, biased, or potentially harmful and inaccurate. Caution is advised.',
|
196 |
examples=[
|
@@ -199,11 +74,7 @@ demo = gr.Interface(
|
|
199 |
["an item name", 30, 0.5],
|
200 |
["a dark and mysterious forest name", 30, 0.5],
|
201 |
["an evil character name", 30, 0.5]
|
202 |
-
]
|
203 |
-
theme="default",
|
204 |
-
flagging_mode="manual",
|
205 |
-
flagging_callback=custom_flag_callback
|
206 |
)
|
207 |
|
208 |
-
demo.queue()
|
209 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import sentencepiece as spm
|
2 |
import numpy as np
|
3 |
import tensorflow as tf
|
4 |
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
5 |
from valx import detect_profanity, detect_hate_speech
|
6 |
import gradio as gr
|
|
|
|
|
|
|
7 |
|
8 |
sp = spm.SentencePieceProcessor()
|
9 |
sp.Load("dungen_dev_preview.model")
|
|
|
28 |
seed_text += ' | '
|
29 |
|
30 |
generated_text = seed_text
|
31 |
+
if generated_text != 'game name | ': # only generate if not the default prompt
|
32 |
for _ in range(next_words):
|
33 |
token_list = sp.encode_as_ids(generated_text)
|
34 |
token_list = pad_sequences([token_list], maxlen=max_seq_len - 1, padding='pre')
|
|
|
56 |
gr.Warning("Flagged potentially harmful output.")
|
57 |
decoded = 'Flagged Output'
|
58 |
|
59 |
+
return decoded
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
demo = gr.Interface(
|
62 |
fn=generate_text,
|
63 |
inputs=[
|
64 |
gr.Textbox(label="Prompt", value="a female character name", max_lines=1),
|
65 |
gr.Slider(1, 100, step=1, label='Next Words', value=30),
|
66 |
+
gr.Slider(0.1, 1, value=0.5, label='Temperature', info='Controls randomness of generation, higher values = more creative, lower values = more probalistic')
|
|
|
|
|
|
|
|
|
67 |
],
|
68 |
+
outputs=gr.Textbox(label="Generated Names"),
|
69 |
title='Dungen Dev - Name Generator',
|
70 |
description='A prompt-based name generator for game developers. Dungen Dev is an experimental model, and may produce outputs that are inappropriate, biased, or potentially harmful and inaccurate. Caution is advised.',
|
71 |
examples=[
|
|
|
74 |
["an item name", 30, 0.5],
|
75 |
["a dark and mysterious forest name", 30, 0.5],
|
76 |
["an evil character name", 30, 0.5]
|
77 |
+
]
|
|
|
|
|
|
|
78 |
)
|
79 |
|
|
|
80 |
demo.launch()
|