Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,92 +1,9 @@
|
|
1 |
-
import sentencepiece as spm
|
2 |
-
import numpy as np
|
3 |
-
import tensorflow as tf
|
4 |
-
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
5 |
-
from valx import detect_profanity, detect_hate_speech
|
6 |
-
import gradio as gr
|
7 |
-
|
8 |
-
sp = spm.SentencePieceProcessor()
|
9 |
-
sp.Load("dungen_dev_preview.model")
|
10 |
-
|
11 |
-
model = tf.keras.models.load_model("dungen_dev_preview_model.keras")
|
12 |
-
|
13 |
-
max_seq_len = 25
|
14 |
-
|
15 |
-
def generate_text(seed_text, next_words=30, temperature=0.5):
|
16 |
-
seed_text = seed_text.strip().lower()
|
17 |
-
|
18 |
-
if "|" in seed_text:
|
19 |
-
gr.Warning("The prompt should not contain the '|' character. Using default prompt.")
|
20 |
-
seed_text = 'game name | '
|
21 |
-
elif detect_profanity([seed_text], language='All'):
|
22 |
-
gr.Warning("Profanity detected in the prompt, using the default prompt.")
|
23 |
-
seed_text = 'game name | '
|
24 |
-
elif (hate_speech_result := detect_hate_speech(seed_text)) and hate_speech_result[0] in ['Hate Speech', 'Offensive Speech']:
|
25 |
-
gr.Warning('Harmful speech detected in the prompt, using default prompt.')
|
26 |
-
seed_text = 'game name | '
|
27 |
-
else:
|
28 |
-
seed_text += ' | '
|
29 |
-
|
30 |
-
generated_text = seed_text
|
31 |
-
if generated_text != 'game name | ': # only generate if not the default prompt
|
32 |
-
for _ in range(next_words):
|
33 |
-
token_list = sp.encode_as_ids(generated_text)
|
34 |
-
token_list = pad_sequences([token_list], maxlen=max_seq_len - 1, padding='pre')
|
35 |
-
predicted = model.predict(token_list, verbose=0)[0]
|
36 |
-
|
37 |
-
predicted = np.asarray(predicted).astype("float64")
|
38 |
-
predicted = np.log(predicted + 1e-8) / temperature
|
39 |
-
exp_preds = np.exp(predicted)
|
40 |
-
predicted = exp_preds / np.sum(exp_preds)
|
41 |
-
|
42 |
-
next_index = np.random.choice(len(predicted), p=predicted)
|
43 |
-
next_token = sp.id_to_piece(next_index)
|
44 |
-
generated_text += next_token
|
45 |
-
|
46 |
-
if next_token.endswith('</s>') or next_token.endswith('<unk>'):
|
47 |
-
break
|
48 |
-
|
49 |
-
decoded = sp.decode_pieces(sp.encode_as_pieces(generated_text))
|
50 |
-
decoded = decoded.replace("</s>", "").replace("<unk>", "").strip()
|
51 |
-
|
52 |
-
if '|' in decoded:
|
53 |
-
decoded = decoded.split('|', 1)[1].strip()
|
54 |
-
|
55 |
-
if any(detect_profanity([decoded], language='All')) or (hate_speech_result := detect_hate_speech(decoded)) and hate_speech_result[0] in ['Hate Speech', 'Offensive Speech']:
|
56 |
-
gr.Warning("Flagged potentially harmful output.")
|
57 |
-
decoded = 'Flagged Output'
|
58 |
-
|
59 |
-
return decoded
|
60 |
-
|
61 |
-
demo = gr.Interface(
|
62 |
-
fn=generate_text,
|
63 |
-
inputs=[
|
64 |
-
gr.Textbox(label="Prompt", value="a female character name", max_lines=1),
|
65 |
-
gr.Slider(1, 100, step=1, label='Next Words', value=30),
|
66 |
-
gr.Slider(0.1, 1, value=0.5, label='Temperature', info='Controls randomness of generation, higher values = more creative, lower values = more probalistic')
|
67 |
-
],
|
68 |
-
outputs=gr.Textbox(label="Generated Names"),
|
69 |
-
title='Dungen Dev - Name Generator',
|
70 |
-
description='A prompt-based name generator for game developers. Dungen Dev is an experimental model, and may produce outputs that are inappropriate, biased, or potentially harmful and inaccurate. Caution is advised.',
|
71 |
-
examples=[
|
72 |
-
["a male character name", 30, 0.5],
|
73 |
-
["a futuristic city name", 30, 0.5],
|
74 |
-
["an item name", 30, 0.5],
|
75 |
-
["a dark and mysterious forest name", 30, 0.5],
|
76 |
-
["an evil character name", 30, 0.5]
|
77 |
-
]
|
78 |
-
)
|
79 |
-
|
80 |
-
demo.launch()
|
81 |
-
|
82 |
# import sentencepiece as spm
|
83 |
# import numpy as np
|
84 |
# import tensorflow as tf
|
85 |
# from tensorflow.keras.preprocessing.sequence import pad_sequences
|
86 |
# from valx import detect_profanity, detect_hate_speech
|
87 |
# import gradio as gr
|
88 |
-
# import csv
|
89 |
-
# from datetime import datetime
|
90 |
|
91 |
# sp = spm.SentencePieceProcessor()
|
92 |
# sp.Load("dungen_dev_preview.model")
|
@@ -111,7 +28,7 @@ demo.launch()
|
|
111 |
# seed_text += ' | '
|
112 |
|
113 |
# generated_text = seed_text
|
114 |
-
# if generated_text != 'game name | ':
|
115 |
# for _ in range(next_words):
|
116 |
# token_list = sp.encode_as_ids(generated_text)
|
117 |
# token_list = pad_sequences([token_list], maxlen=max_seq_len - 1, padding='pre')
|
@@ -139,52 +56,16 @@ demo.launch()
|
|
139 |
# gr.Warning("Flagged potentially harmful output.")
|
140 |
# decoded = 'Flagged Output'
|
141 |
|
142 |
-
# return decoded
|
143 |
-
|
144 |
-
# flagged_outputs = []
|
145 |
-
|
146 |
-
# def flag_output(prompt, generated_text, next_words, temperature):
|
147 |
-
# if not generated_text.strip():
|
148 |
-
# return "Cannot flag an empty output."
|
149 |
-
|
150 |
-
# timestamp = datetime.now().isoformat()
|
151 |
-
# flagged_outputs.append({
|
152 |
-
# "Prompt": prompt,
|
153 |
-
# "Generated Text": generated_text,
|
154 |
-
# "Next Words": next_words,
|
155 |
-
# "Temperature": temperature,
|
156 |
-
# "Timestamp": timestamp
|
157 |
-
# })
|
158 |
-
|
159 |
-
# with open("flagged_outputs.csv", "a", newline="") as file:
|
160 |
-
# writer = csv.DictWriter(file, fieldnames=["Prompt", "Generated Text", "Next Words", "Temperature", "Timestamp"])
|
161 |
-
# if file.tell() == 0:
|
162 |
-
# writer.writeheader()
|
163 |
-
# writer.writerow({
|
164 |
-
# "Prompt": prompt,
|
165 |
-
# "Generated Text": generated_text,
|
166 |
-
# "Next Words": next_words,
|
167 |
-
# "Temperature": temperature,
|
168 |
-
# "Timestamp": timestamp
|
169 |
-
# })
|
170 |
-
|
171 |
-
# return "Output flagged successfully."
|
172 |
-
|
173 |
-
# def enable_flag_button(state):
|
174 |
-
# return gr.update(interactive=state)
|
175 |
|
176 |
# demo = gr.Interface(
|
177 |
# fn=generate_text,
|
178 |
# inputs=[
|
179 |
# gr.Textbox(label="Prompt", value="a female character name", max_lines=1),
|
180 |
# gr.Slider(1, 100, step=1, label='Next Words', value=30),
|
181 |
-
# gr.Slider(0.1, 1, value=0.5, label='Temperature', info='Controls randomness of generation, higher values = more creative, lower values = more
|
182 |
# ],
|
183 |
-
# outputs=
|
184 |
-
# gr.Textbox(label="Generated Name", interactive=True),
|
185 |
-
# gr.Button("Flag Output", interactive=False)
|
186 |
-
# ],
|
187 |
-
# live=False,
|
188 |
# title='Dungen Dev - Name Generator',
|
189 |
# description='A prompt-based name generator for game developers. Dungen Dev is an experimental model, and may produce outputs that are inappropriate, biased, or potentially harmful and inaccurate. Caution is advised.',
|
190 |
# examples=[
|
@@ -193,10 +74,137 @@ demo.launch()
|
|
193 |
# ["an item name", 30, 0.5],
|
194 |
# ["a dark and mysterious forest name", 30, 0.5],
|
195 |
# ["an evil character name", 30, 0.5]
|
196 |
-
# ]
|
197 |
-
# theme="default",
|
198 |
-
# allow_flagging=False
|
199 |
# )
|
200 |
|
201 |
-
# demo.
|
202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# import sentencepiece as spm
|
2 |
# import numpy as np
|
3 |
# import tensorflow as tf
|
4 |
# from tensorflow.keras.preprocessing.sequence import pad_sequences
|
5 |
# from valx import detect_profanity, detect_hate_speech
|
6 |
# import gradio as gr
|
|
|
|
|
7 |
|
8 |
# sp = spm.SentencePieceProcessor()
|
9 |
# sp.Load("dungen_dev_preview.model")
|
|
|
28 |
# seed_text += ' | '
|
29 |
|
30 |
# generated_text = seed_text
|
31 |
+
# if generated_text != 'game name | ': # only generate if not the default prompt
|
32 |
# for _ in range(next_words):
|
33 |
# token_list = sp.encode_as_ids(generated_text)
|
34 |
# token_list = pad_sequences([token_list], maxlen=max_seq_len - 1, padding='pre')
|
|
|
56 |
# gr.Warning("Flagged potentially harmful output.")
|
57 |
# decoded = 'Flagged Output'
|
58 |
|
59 |
+
# return decoded
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
# demo = gr.Interface(
|
62 |
# fn=generate_text,
|
63 |
# inputs=[
|
64 |
# gr.Textbox(label="Prompt", value="a female character name", max_lines=1),
|
65 |
# gr.Slider(1, 100, step=1, label='Next Words', value=30),
|
66 |
+
# gr.Slider(0.1, 1, value=0.5, label='Temperature', info='Controls randomness of generation, higher values = more creative, lower values = more probalistic')
|
67 |
# ],
|
68 |
+
# outputs=gr.Textbox(label="Generated Names"),
|
|
|
|
|
|
|
|
|
69 |
# title='Dungen Dev - Name Generator',
|
70 |
# description='A prompt-based name generator for game developers. Dungen Dev is an experimental model, and may produce outputs that are inappropriate, biased, or potentially harmful and inaccurate. Caution is advised.',
|
71 |
# examples=[
|
|
|
74 |
# ["an item name", 30, 0.5],
|
75 |
# ["a dark and mysterious forest name", 30, 0.5],
|
76 |
# ["an evil character name", 30, 0.5]
|
77 |
+
# ]
|
|
|
|
|
78 |
# )
|
79 |
|
80 |
+
# demo.launch()
|
81 |
+
|
82 |
+
import sentencepiece as spm
|
83 |
+
import numpy as np
|
84 |
+
import tensorflow as tf
|
85 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
86 |
+
from valx import detect_profanity, detect_hate_speech
|
87 |
+
import gradio as gr
|
88 |
+
from datasets import load_dataset, DatasetDict, Dataset
|
89 |
+
from huggingface_hub import HfApi
|
90 |
+
from datetime import datetime
|
91 |
+
|
92 |
+
sp = spm.SentencePieceProcessor()
|
93 |
+
sp.Load("dungen_dev_preview.model")
|
94 |
+
|
95 |
+
model = tf.keras.models.load_model("dungen_dev_preview_model.keras")
|
96 |
+
|
97 |
+
max_seq_len = 25
|
98 |
+
|
99 |
+
def generate_text(seed_text, next_words=30, temperature=0.5):
|
100 |
+
seed_text = seed_text.strip().lower()
|
101 |
+
|
102 |
+
if "|" in seed_text:
|
103 |
+
gr.Warning("The prompt should not contain the '|' character. Using default prompt.")
|
104 |
+
seed_text = 'game name | '
|
105 |
+
elif detect_profanity([seed_text], language='All'):
|
106 |
+
gr.Warning("Profanity detected in the prompt, using the default prompt.")
|
107 |
+
seed_text = 'game name | '
|
108 |
+
elif (hate_speech_result := detect_hate_speech(seed_text)) and hate_speech_result[0] in ['Hate Speech', 'Offensive Speech']:
|
109 |
+
gr.Warning('Harmful speech detected in the prompt, using default prompt.')
|
110 |
+
seed_text = 'game name | '
|
111 |
+
else:
|
112 |
+
seed_text += ' | '
|
113 |
+
|
114 |
+
generated_text = seed_text
|
115 |
+
if generated_text != 'game name | ': # only generate if not the default prompt
|
116 |
+
for _ in range(next_words):
|
117 |
+
token_list = sp.encode_as_ids(generated_text)
|
118 |
+
token_list = pad_sequences([token_list], maxlen=max_seq_len - 1, padding='pre')
|
119 |
+
predicted = model.predict(token_list, verbose=0)[0]
|
120 |
+
|
121 |
+
predicted = np.asarray(predicted).astype("float64")
|
122 |
+
predicted = np.log(predicted + 1e-8) / temperature
|
123 |
+
exp_preds = np.exp(predicted)
|
124 |
+
predicted = exp_preds / np.sum(exp_preds)
|
125 |
+
|
126 |
+
next_index = np.random.choice(len(predicted), p=predicted)
|
127 |
+
next_token = sp.id_to_piece(next_index)
|
128 |
+
generated_text += next_token
|
129 |
+
|
130 |
+
if next_token.endswith('</s>') or next_token.endswith('<unk>'):
|
131 |
+
break
|
132 |
+
|
133 |
+
decoded = sp.decode_pieces(sp.encode_as_pieces(generated_text))
|
134 |
+
decoded = decoded.replace("</s>", "").replace("<unk>", "").strip()
|
135 |
+
|
136 |
+
if '|' in decoded:
|
137 |
+
decoded = decoded.split('|', 1)[1].strip()
|
138 |
+
|
139 |
+
if any(detect_profanity([decoded], language='All')) or (hate_speech_result := detect_hate_speech(decoded)) and hate_speech_result[0] in ['Hate Speech', 'Offensive Speech']:
|
140 |
+
gr.Warning("Flagged potentially harmful output.")
|
141 |
+
decoded = 'Flagged Output'
|
142 |
+
|
143 |
+
return decoded, gr.update(interactive=True)
|
144 |
+
|
145 |
+
flagged_outputs = []
|
146 |
+
|
147 |
+
def flag_output(prompt, generated_text, next_words, temperature):
|
148 |
+
if not generated_text.strip():
|
149 |
+
return "Cannot flag an empty output."
|
150 |
+
|
151 |
+
timestamp = datetime.now().isoformat()
|
152 |
+
|
153 |
+
dataset_id = "InfinitodeLTD/DungenDev-FlaggedOutputs"
|
154 |
+
|
155 |
+
# Load the existing dataset (if it exists) or create an empty DatasetDict
|
156 |
+
try:
|
157 |
+
dataset = load_dataset(dataset_id)
|
158 |
+
except:
|
159 |
+
dataset = DatasetDict()
|
160 |
+
|
161 |
+
# Prepare new data to append
|
162 |
+
new_data = [{
|
163 |
+
"Prompt": prompt,
|
164 |
+
"Generated Text": generated_text,
|
165 |
+
"Next Words": next_words,
|
166 |
+
"Temperature": temperature,
|
167 |
+
"Timestamp": timestamp
|
168 |
+
}]
|
169 |
+
|
170 |
+
new_dataset = Dataset.from_list(new_data)
|
171 |
+
|
172 |
+
if "train" in dataset:
|
173 |
+
dataset["train"] = concatenate_datasets([dataset["train"], new_dataset]) # Append to existing train
|
174 |
+
else:
|
175 |
+
dataset["train"] = new_dataset # Create the train split
|
176 |
+
|
177 |
+
dataset.push_to_hub(dataset_id)
|
178 |
+
|
179 |
+
return "Output flagged successfully."
|
180 |
+
|
181 |
+
def enable_flag_button(state):
|
182 |
+
return gr.update(interactive=state)
|
183 |
+
|
184 |
+
demo = gr.Interface(
|
185 |
+
fn=generate_text,
|
186 |
+
inputs=[
|
187 |
+
gr.Textbox(label="Prompt", value="a female character name", max_lines=1),
|
188 |
+
gr.Slider(1, 100, step=1, label='Next Words', value=30),
|
189 |
+
gr.Slider(0.1, 1, value=0.5, label='Temperature', info='Controls randomness of generation, higher values = more creative, lower values = more probabilistic')
|
190 |
+
],
|
191 |
+
outputs=[
|
192 |
+
gr.Textbox(label="Generated Name", interactive=True),
|
193 |
+
gr.Button("Flag Output", interactive=False, elem_id="flag-button")
|
194 |
+
],
|
195 |
+
live=False,
|
196 |
+
title='Dungen Dev - Name Generator',
|
197 |
+
description='A prompt-based name generator for game developers. Dungen Dev is an experimental model, and may produce outputs that are inappropriate, biased, or potentially harmful and inaccurate. Caution is advised.',
|
198 |
+
examples=[
|
199 |
+
["a male character name", 30, 0.5],
|
200 |
+
["a futuristic city name", 30, 0.5],
|
201 |
+
["an item name", 30, 0.5],
|
202 |
+
["a dark and mysterious forest name", 30, 0.5],
|
203 |
+
["an evil character name", 30, 0.5]
|
204 |
+
],
|
205 |
+
theme="default",
|
206 |
+
allow_flagging=False
|
207 |
+
)
|
208 |
+
|
209 |
+
demo.queue()
|
210 |
+
demo.launch()
|