Spaces:
Running
Running
Testing logging
Browse files
app.py
CHANGED
@@ -1,17 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import sentencepiece as spm
|
2 |
import numpy as np
|
3 |
import tensorflow as tf
|
4 |
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
5 |
from valx import detect_profanity, detect_hate_speech
|
6 |
import gradio as gr
|
|
|
|
|
|
|
|
|
7 |
|
|
|
8 |
sp = spm.SentencePieceProcessor()
|
9 |
sp.Load("dungen_dev_preview.model")
|
10 |
-
|
11 |
model = tf.keras.models.load_model("dungen_dev_preview_model.keras")
|
12 |
-
|
13 |
max_seq_len = 25
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
def generate_text(seed_text, next_words=30, temperature=0.5):
|
16 |
seed_text = seed_text.strip().lower()
|
17 |
|
@@ -28,7 +121,7 @@ def generate_text(seed_text, next_words=30, temperature=0.5):
|
|
28 |
seed_text += ' | '
|
29 |
|
30 |
generated_text = seed_text
|
31 |
-
if generated_text != 'game name | ':
|
32 |
for _ in range(next_words):
|
33 |
token_list = sp.encode_as_ids(generated_text)
|
34 |
token_list = pad_sequences([token_list], maxlen=max_seq_len - 1, padding='pre')
|
@@ -58,23 +151,44 @@ def generate_text(seed_text, next_words=30, temperature=0.5):
|
|
58 |
|
59 |
return decoded
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
["a male character name", 30, 0.5],
|
73 |
["a futuristic city name", 30, 0.5],
|
74 |
["an item name", 30, 0.5],
|
75 |
["a dark and mysterious forest name", 30, 0.5],
|
76 |
["an evil character name", 30, 0.5]
|
77 |
]
|
78 |
-
)
|
79 |
|
80 |
demo.launch()
|
|
|
1 |
+
# import sentencepiece as spm
|
2 |
+
# import numpy as np
|
3 |
+
# import tensorflow as tf
|
4 |
+
# from tensorflow.keras.preprocessing.sequence import pad_sequences
|
5 |
+
# from valx import detect_profanity, detect_hate_speech
|
6 |
+
# import gradio as gr
|
7 |
+
|
8 |
+
# sp = spm.SentencePieceProcessor()
|
9 |
+
# sp.Load("dungen_dev_preview.model")
|
10 |
+
|
11 |
+
# model = tf.keras.models.load_model("dungen_dev_preview_model.keras")
|
12 |
+
|
13 |
+
# max_seq_len = 25
|
14 |
+
|
15 |
+
# def generate_text(seed_text, next_words=30, temperature=0.5):
|
16 |
+
# seed_text = seed_text.strip().lower()
|
17 |
+
|
18 |
+
# if "|" in seed_text:
|
19 |
+
# gr.Warning("The prompt should not contain the '|' character. Using default prompt.")
|
20 |
+
# seed_text = 'game name | '
|
21 |
+
# elif detect_profanity([seed_text], language='All'):
|
22 |
+
# gr.Warning("Profanity detected in the prompt, using the default prompt.")
|
23 |
+
# seed_text = 'game name | '
|
24 |
+
# elif (hate_speech_result := detect_hate_speech(seed_text)) and hate_speech_result[0] in ['Hate Speech', 'Offensive Speech']:
|
25 |
+
# gr.Warning('Harmful speech detected in the prompt, using default prompt.')
|
26 |
+
# seed_text = 'game name | '
|
27 |
+
# else:
|
28 |
+
# seed_text += ' | '
|
29 |
+
|
30 |
+
# generated_text = seed_text
|
31 |
+
# if generated_text != 'game name | ': # only generate if not the default prompt
|
32 |
+
# for _ in range(next_words):
|
33 |
+
# token_list = sp.encode_as_ids(generated_text)
|
34 |
+
# token_list = pad_sequences([token_list], maxlen=max_seq_len - 1, padding='pre')
|
35 |
+
# predicted = model.predict(token_list, verbose=0)[0]
|
36 |
+
|
37 |
+
# predicted = np.asarray(predicted).astype("float64")
|
38 |
+
# predicted = np.log(predicted + 1e-8) / temperature
|
39 |
+
# exp_preds = np.exp(predicted)
|
40 |
+
# predicted = exp_preds / np.sum(exp_preds)
|
41 |
+
|
42 |
+
# next_index = np.random.choice(len(predicted), p=predicted)
|
43 |
+
# next_token = sp.id_to_piece(next_index)
|
44 |
+
# generated_text += next_token
|
45 |
+
|
46 |
+
# if next_token.endswith('</s>') or next_token.endswith('<unk>'):
|
47 |
+
# break
|
48 |
+
|
49 |
+
# decoded = sp.decode_pieces(sp.encode_as_pieces(generated_text))
|
50 |
+
# decoded = decoded.replace("</s>", "").replace("<unk>", "").strip()
|
51 |
+
|
52 |
+
# if '|' in decoded:
|
53 |
+
# decoded = decoded.split('|', 1)[1].strip()
|
54 |
+
|
55 |
+
# if any(detect_profanity([decoded], language='All')) or (hate_speech_result := detect_hate_speech(decoded)) and hate_speech_result[0] in ['Hate Speech', 'Offensive Speech']:
|
56 |
+
# gr.Warning("Flagged potentially harmful output.")
|
57 |
+
# decoded = 'Flagged Output'
|
58 |
+
|
59 |
+
# return decoded
|
60 |
+
|
61 |
+
# demo = gr.Interface(
|
62 |
+
# fn=generate_text,
|
63 |
+
# inputs=[
|
64 |
+
# gr.Textbox(label="Prompt", value="a female character name", max_lines=1),
|
65 |
+
# gr.Slider(1, 100, step=1, label='Next Words', value=30),
|
66 |
+
# gr.Slider(0.1, 1, value=0.5, label='Temperature', info='Controls randomness of generation, higher values = more creative, lower values = more probalistic')
|
67 |
+
# ],
|
68 |
+
# outputs=gr.Textbox(label="Generated Names"),
|
69 |
+
# title='Dungen Dev - Name Generator',
|
70 |
+
# description='A prompt-based name generator for game developers. Dungen Dev is an experimental model, and may produce outputs that are inappropriate, biased, or potentially harmful and inaccurate. Caution is advised.',
|
71 |
+
# examples=[
|
72 |
+
# ["a male character name", 30, 0.5],
|
73 |
+
# ["a futuristic city name", 30, 0.5],
|
74 |
+
# ["an item name", 30, 0.5],
|
75 |
+
# ["a dark and mysterious forest name", 30, 0.5],
|
76 |
+
# ["an evil character name", 30, 0.5]
|
77 |
+
# ]
|
78 |
+
# )
|
79 |
+
|
80 |
+
# demo.launch()
|
81 |
+
|
82 |
import sentencepiece as spm
|
83 |
import numpy as np
|
84 |
import tensorflow as tf
|
85 |
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
86 |
from valx import detect_profanity, detect_hate_speech
|
87 |
import gradio as gr
|
88 |
+
import logging
|
89 |
+
import csv
|
90 |
+
import os
|
91 |
+
from datetime import datetime
|
92 |
|
93 |
+
# Model and SentencePiece loading
|
94 |
sp = spm.SentencePieceProcessor()
|
95 |
sp.Load("dungen_dev_preview.model")
|
|
|
96 |
model = tf.keras.models.load_model("dungen_dev_preview_model.keras")
|
|
|
97 |
max_seq_len = 25
|
98 |
|
99 |
+
# Logging setup
|
100 |
+
CSV_FILE = "flagged_outputs.csv"
|
101 |
+
if not os.path.exists(CSV_FILE):
|
102 |
+
with open(CSV_FILE, "w", newline="", encoding="utf-8") as csvfile: #added encoding
|
103 |
+
writer = csv.writer(csvfile)
|
104 |
+
writer.writerow(["Timestamp", "Flagged Text"])
|
105 |
+
|
106 |
+
logging.basicConfig(filename="app.log", level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
107 |
+
|
108 |
def generate_text(seed_text, next_words=30, temperature=0.5):
|
109 |
seed_text = seed_text.strip().lower()
|
110 |
|
|
|
121 |
seed_text += ' | '
|
122 |
|
123 |
generated_text = seed_text
|
124 |
+
if generated_text != 'game name | ':
|
125 |
for _ in range(next_words):
|
126 |
token_list = sp.encode_as_ids(generated_text)
|
127 |
token_list = pad_sequences([token_list], maxlen=max_seq_len - 1, padding='pre')
|
|
|
151 |
|
152 |
return decoded
|
153 |
|
154 |
+
def flag_output(text):
|
155 |
+
logging.info(f"Output flagged: {text}")
|
156 |
+
timestamp = datetime.now().isoformat()
|
157 |
+
with open(CSV_FILE, "a", newline="", encoding="utf-8") as csvfile: #added encoding
|
158 |
+
writer = csv.writer(csvfile)
|
159 |
+
writer.writerow([timestamp, text])
|
160 |
+
return "Output Flagged. Thank you for your feedback."
|
161 |
+
|
162 |
+
with gr.Blocks() as demo:
|
163 |
+
gr.Markdown("""# Dungen Dev - Name Generator
|
164 |
+
A prompt-based name generator for game developers.""")
|
165 |
+
|
166 |
+
with gr.Row():
|
167 |
+
with gr.Column():
|
168 |
+
prompt = gr.Textbox(label="Prompt", value="a female character name", max_lines=1)
|
169 |
+
with gr.Row():
|
170 |
+
next_words_slider = gr.Slider(1, 100, step=1, label='Next Words', value=30)
|
171 |
+
temperature_slider = gr.Slider(0.1, 1, value=0.5, label='Temperature', info='Controls randomness of generation, higher values = more creative, lower values = more probalistic')
|
172 |
+
generate_button = gr.Button("Generate")
|
173 |
+
with gr.Column():
|
174 |
+
output_text = gr.Textbox(label="Generated Names", interactive=False)
|
175 |
+
flag_button = gr.Button("Flag Output")
|
176 |
+
|
177 |
+
gr.Markdown("""Dungen Dev is an experimental model, and may produce outputs that are inappropriate, biased, or potentially harmful and inaccurate. Caution is advised.""")
|
178 |
+
|
179 |
+
generate_button.click(
|
180 |
+
fn=generate_text,
|
181 |
+
inputs=[prompt, next_words_slider, temperature_slider],
|
182 |
+
outputs=output_text
|
183 |
+
)
|
184 |
+
flag_button.click(flag_output, inputs=output_text, outputs=gr.Textbox(label="Flag Status", interactive=False))
|
185 |
+
|
186 |
+
demo.examples=[
|
187 |
["a male character name", 30, 0.5],
|
188 |
["a futuristic city name", 30, 0.5],
|
189 |
["an item name", 30, 0.5],
|
190 |
["a dark and mysterious forest name", 30, 0.5],
|
191 |
["an evil character name", 30, 0.5]
|
192 |
]
|
|
|
193 |
|
194 |
demo.launch()
|