Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sentencepiece as spm
|
2 |
+
import numpy as np
|
3 |
+
import tensorflow as tf
|
4 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
5 |
+
import re
|
6 |
+
from valx import detect_profanity, detect_hate_speech
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
sp = spm.SentencePieceProcessor()
|
10 |
+
sp.Load("dungen_dev_preview.model")
|
11 |
+
|
12 |
+
model = tf.keras.models.load_model("dungen_dev_preview_model.keras")
|
13 |
+
|
14 |
+
max_seq_len = 25
|
15 |
+
|
16 |
+
def generate_text(seed_text, next_words=5, temperature=1.0):
|
17 |
+
seed_text = seed_text.lowercase() + ' | '
|
18 |
+
hate_speech = detect_hate_speech(seed_text)
|
19 |
+
profanity = detect_profanity([seed_text], language='All')
|
20 |
+
|
21 |
+
if len(profanity) > 0:
|
22 |
+
gr.Warning("Profanity detected in the prompt, using the default prompt.")
|
23 |
+
seed_text = 'game name | '
|
24 |
+
else:
|
25 |
+
if hate_speech == ['Hate Speech']:
|
26 |
+
gr.Warning('Hate speech detected in the seed text, using an empty seed text.')
|
27 |
+
seed_text = 'game name | '
|
28 |
+
elif hate_speech == ['Offensive Speech']:
|
29 |
+
gr.Warning('Offensive speech detected in the seed text, using an empty seed text.')
|
30 |
+
seed_text = 'game name | '
|
31 |
+
|
32 |
+
generated_text = seed_text
|
33 |
+
for _ in range(next_words):
|
34 |
+
token_list = sp.encode_as_ids(generated_text)
|
35 |
+
token_list = pad_sequences([token_list], maxlen=max_seq_len - 1, padding='pre')
|
36 |
+
predicted = model.predict(token_list, verbose=0)[0]
|
37 |
+
|
38 |
+
# Apply temperature
|
39 |
+
predicted = np.asarray(predicted).astype("float64")
|
40 |
+
predicted = np.log(predicted) / temperature
|
41 |
+
exp_preds = np.exp(predicted)
|
42 |
+
predicted = exp_preds / np.sum(exp_preds)
|
43 |
+
|
44 |
+
next_index = np.random.choice(len(predicted), p=predicted)
|
45 |
+
next_token = sp.id_to_piece(next_index)
|
46 |
+
generated_text += next_token
|
47 |
+
|
48 |
+
if next_token.endswith('</s>') or next_token.endswith('<unk>'):
|
49 |
+
break
|
50 |
+
|
51 |
+
decoded = sp.decode_pieces(sp.encode_as_pieces(generated_text))
|
52 |
+
decoded = decoded.replace("</s>", "")
|
53 |
+
decoded = decoded.replace("<unk>", "")
|
54 |
+
cleaned_text = decoded.strip()
|
55 |
+
|
56 |
+
hate_speech2 = detect_hate_speech(cleaned_text)
|
57 |
+
profanity2 = detect_profanity([cleaned_text], language='All')
|
58 |
+
|
59 |
+
if len(profanity2) > 0:
|
60 |
+
gr.Warning("Flagged potentially harmful output.")
|
61 |
+
cleaned_text = 'Flagged Output'
|
62 |
+
else:
|
63 |
+
if hate_speech2 == ['Hate Speech']:
|
64 |
+
gr.Warning('Flagged potentially harmful output.')
|
65 |
+
cleaned_text = 'Flagged Output'
|
66 |
+
elif hate_speech2 == ['Offensive Speech']:
|
67 |
+
gr.Warning('Flagged potentially harmful output.')
|
68 |
+
cleaned_text = 'Flagged Output'
|
69 |
+
|
70 |
+
return cleaned_text
|
71 |
+
|
72 |
+
demo = gr.Interface(
|
73 |
+
fn=generate_text,
|
74 |
+
inputs=[label="Prompt", value="a female character name", max_lines=1), gr.Slider(1,100, step=1, label='Next Words', value=30), gr.Slider(0.1, 1, value=0.5, label='Temperature', info='Controls randomness of generation, higher values = more creative, lower values = more probalistic')],
|
75 |
+
outputs=[gr.Dataframe(row_count = (2, "dynamic"), col_count=(1, "fixed"), label="Generated Names", headers=["Names"])],
|
76 |
+
title='Dungen Dev - Name Generator',
|
77 |
+
description='A prompt-based name generator for game developers.'
|
78 |
+
)
|
79 |
+
|
80 |
+
demo.launch()
|