Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -224,6 +224,114 @@ def generateNames(type, amount, max_length=30, temperature=0.5, seed_text=""):
|
|
224 |
names.append(name)
|
225 |
return pd.DataFrame(names, columns=['Names'])
|
226 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
elif type == "Fantasy":
|
228 |
max_seq_len = 16 # For fantasy, 16
|
229 |
sp = spm.SentencePieceProcessor()
|
@@ -262,7 +370,7 @@ def generateNames(type, amount, max_length=30, temperature=0.5, seed_text=""):
|
|
262 |
|
263 |
demo = gr.Interface(
|
264 |
fn=generateNames,
|
265 |
-
inputs=[gr.Radio(choices=["Terraria", "Skyrim", "Witcher", "Fantasy"], label="Choose a model for your request", value="Terraria"), gr.Slider(1,100, step=1, label='Amount of Names', info='How many names to generate, must be greater than 0'), gr.Slider(10, 60, value=30, step=1, label='Max Length', info='Max length of the generated word'), gr.Slider(0.1, 1, value=0.5, label='Temperature', info='Controls randomness of generation, higher values = more creative, lower values = more probalistic'), gr.Textbox('', label='Seed text (optional)', info='The starting text to begin with', max_lines=1, )],
|
266 |
outputs=[gr.Dataframe(row_count = (2, "dynamic"), col_count=(1, "fixed"), label="Generated Names", headers=["Names"])],
|
267 |
title='Dungen - Name Generator',
|
268 |
description='A fun game-inspired name generator. For an example of how to create, and train your model, similar to this one, head over to: https://github.com/Infinitode/OPEN-ARC/tree/main/Project-5-TWNG. There you will find our base model, the dataset we used, and implementation code in the form of a Jupyter Notebook (exported from Kaggle).'
|
|
|
224 |
names.append(name)
|
225 |
return pd.DataFrame(names, columns=['Names'])
|
226 |
|
227 |
+
elif type == "WOW":
|
228 |
+
max_seq_len = 16 # For skyrim = 13, for terraria = 12
|
229 |
+
sp = spm.SentencePieceProcessor()
|
230 |
+
sp.load("models/wow_names.model")
|
231 |
+
amount = int(amount)
|
232 |
+
max_length = int(max_length)
|
233 |
+
|
234 |
+
names = []
|
235 |
+
|
236 |
+
# Define necessary variables
|
237 |
+
vocab_size = sp.GetPieceSize()
|
238 |
+
|
239 |
+
# Load TFLite model
|
240 |
+
interpreter = tf.lite.Interpreter(model_path="models/dungen_wow_model.tflite")
|
241 |
+
interpreter.allocate_tensors()
|
242 |
+
|
243 |
+
# Use the function to generate a name
|
244 |
+
for _ in range(amount):
|
245 |
+
generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature, max_seq_len=max_seq_len)
|
246 |
+
stripped = generated_name.strip()
|
247 |
+
hate_speech = detect_hate_speech(stripped)
|
248 |
+
profanity = detect_profanity([stripped], language='All')
|
249 |
+
name = ''
|
250 |
+
|
251 |
+
if len(profanity) > 0:
|
252 |
+
name = "Profanity Detected"
|
253 |
+
else:
|
254 |
+
if hate_speech == ['Hate Speech']:
|
255 |
+
name = 'Hate Speech Detected'
|
256 |
+
elif hate_speech == ['Offensive Speech']:
|
257 |
+
name = 'Offensive Speech Detected'
|
258 |
+
elif hate_speech == ['No Hate and Offensive Speech']:
|
259 |
+
name = stripped
|
260 |
+
names.append(name)
|
261 |
+
return pd.DataFrame(names, columns=['Names'])
|
262 |
+
|
263 |
+
elif type == "Minecraft":
|
264 |
+
max_seq_len = 17 # For skyrim = 13, for terraria = 12
|
265 |
+
sp = spm.SentencePieceProcessor()
|
266 |
+
sp.load("models/minecraft_names.model")
|
267 |
+
amount = int(amount)
|
268 |
+
max_length = int(max_length)
|
269 |
+
|
270 |
+
names = []
|
271 |
+
|
272 |
+
# Define necessary variables
|
273 |
+
vocab_size = sp.GetPieceSize()
|
274 |
+
|
275 |
+
# Load TFLite model
|
276 |
+
interpreter = tf.lite.Interpreter(model_path="models/dungen_minecraft_model.tflite")
|
277 |
+
interpreter.allocate_tensors()
|
278 |
+
|
279 |
+
# Use the function to generate a name
|
280 |
+
for _ in range(amount):
|
281 |
+
generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature, max_seq_len=max_seq_len)
|
282 |
+
stripped = generated_name.strip()
|
283 |
+
hate_speech = detect_hate_speech(stripped)
|
284 |
+
profanity = detect_profanity([stripped], language='All')
|
285 |
+
name = ''
|
286 |
+
|
287 |
+
if len(profanity) > 0:
|
288 |
+
name = "Profanity Detected"
|
289 |
+
else:
|
290 |
+
if hate_speech == ['Hate Speech']:
|
291 |
+
name = 'Hate Speech Detected'
|
292 |
+
elif hate_speech == ['Offensive Speech']:
|
293 |
+
name = 'Offensive Speech Detected'
|
294 |
+
elif hate_speech == ['No Hate and Offensive Speech']:
|
295 |
+
name = stripped
|
296 |
+
names.append(name)
|
297 |
+
return pd.DataFrame(names, columns=['Names'])
|
298 |
+
|
299 |
+
elif type == "Dark Souls":
|
300 |
+
max_seq_len = 13 # For skyrim = 13, for terraria = 12
|
301 |
+
sp = spm.SentencePieceProcessor()
|
302 |
+
sp.load("models/dark_souls_names.model")
|
303 |
+
amount = int(amount)
|
304 |
+
max_length = int(max_length)
|
305 |
+
|
306 |
+
names = []
|
307 |
+
|
308 |
+
# Define necessary variables
|
309 |
+
vocab_size = sp.GetPieceSize()
|
310 |
+
|
311 |
+
# Load TFLite model
|
312 |
+
interpreter = tf.lite.Interpreter(model_path="models/dungen_dark_souls_model.tflite")
|
313 |
+
interpreter.allocate_tensors()
|
314 |
+
|
315 |
+
# Use the function to generate a name
|
316 |
+
for _ in range(amount):
|
317 |
+
generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature, max_seq_len=max_seq_len)
|
318 |
+
stripped = generated_name.strip()
|
319 |
+
hate_speech = detect_hate_speech(stripped)
|
320 |
+
profanity = detect_profanity([stripped], language='All')
|
321 |
+
name = ''
|
322 |
+
|
323 |
+
if len(profanity) > 0:
|
324 |
+
name = "Profanity Detected"
|
325 |
+
else:
|
326 |
+
if hate_speech == ['Hate Speech']:
|
327 |
+
name = 'Hate Speech Detected'
|
328 |
+
elif hate_speech == ['Offensive Speech']:
|
329 |
+
name = 'Offensive Speech Detected'
|
330 |
+
elif hate_speech == ['No Hate and Offensive Speech']:
|
331 |
+
name = stripped
|
332 |
+
names.append(name)
|
333 |
+
return pd.DataFrame(names, columns=['Names'])
|
334 |
+
|
335 |
elif type == "Fantasy":
|
336 |
max_seq_len = 16 # For fantasy, 16
|
337 |
sp = spm.SentencePieceProcessor()
|
|
|
370 |
|
371 |
demo = gr.Interface(
|
372 |
fn=generateNames,
|
373 |
+
inputs=[gr.Radio(choices=["Terraria", "Skyrim", "Witcher", "WOW", "Minecraft", "Dark Souls", "Fantasy"], label="Choose a model for your request", value="Terraria"), gr.Slider(1,100, step=1, label='Amount of Names', info='How many names to generate, must be greater than 0'), gr.Slider(10, 60, value=30, step=1, label='Max Length', info='Max length of the generated word'), gr.Slider(0.1, 1, value=0.5, label='Temperature', info='Controls randomness of generation, higher values = more creative, lower values = more probalistic'), gr.Textbox('', label='Seed text (optional)', info='The starting text to begin with', max_lines=1, )],
|
374 |
outputs=[gr.Dataframe(row_count = (2, "dynamic"), col_count=(1, "fixed"), label="Generated Names", headers=["Names"])],
|
375 |
title='Dungen - Name Generator',
|
376 |
description='A fun game-inspired name generator. For an example of how to create, and train your model, similar to this one, head over to: https://github.com/Infinitode/OPEN-ARC/tree/main/Project-5-TWNG. There you will find our base model, the dataset we used, and implementation code in the form of a Jupyter Notebook (exported from Kaggle).'
|