JohanBeytell commited on
Commit
b497e07
·
verified ·
1 Parent(s): d15dbf5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +109 -1
app.py CHANGED
@@ -224,6 +224,114 @@ def generateNames(type, amount, max_length=30, temperature=0.5, seed_text=""):
224
  names.append(name)
225
  return pd.DataFrame(names, columns=['Names'])
226
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
227
  elif type == "Fantasy":
228
  max_seq_len = 16 # For fantasy, 16
229
  sp = spm.SentencePieceProcessor()
@@ -262,7 +370,7 @@ def generateNames(type, amount, max_length=30, temperature=0.5, seed_text=""):
262
 
263
  demo = gr.Interface(
264
  fn=generateNames,
265
- inputs=[gr.Radio(choices=["Terraria", "Skyrim", "Witcher", "Fantasy"], label="Choose a model for your request", value="Terraria"), gr.Slider(1,100, step=1, label='Amount of Names', info='How many names to generate, must be greater than 0'), gr.Slider(10, 60, value=30, step=1, label='Max Length', info='Max length of the generated word'), gr.Slider(0.1, 1, value=0.5, label='Temperature', info='Controls randomness of generation, higher values = more creative, lower values = more probalistic'), gr.Textbox('', label='Seed text (optional)', info='The starting text to begin with', max_lines=1, )],
266
  outputs=[gr.Dataframe(row_count = (2, "dynamic"), col_count=(1, "fixed"), label="Generated Names", headers=["Names"])],
267
  title='Dungen - Name Generator',
268
  description='A fun game-inspired name generator. For an example of how to create, and train your model, similar to this one, head over to: https://github.com/Infinitode/OPEN-ARC/tree/main/Project-5-TWNG. There you will find our base model, the dataset we used, and implementation code in the form of a Jupyter Notebook (exported from Kaggle).'
 
224
  names.append(name)
225
  return pd.DataFrame(names, columns=['Names'])
226
 
227
+ elif type == "WOW":
228
+ max_seq_len = 16 # For skyrim = 13, for terraria = 12
229
+ sp = spm.SentencePieceProcessor()
230
+ sp.load("models/wow_names.model")
231
+ amount = int(amount)
232
+ max_length = int(max_length)
233
+
234
+ names = []
235
+
236
+ # Define necessary variables
237
+ vocab_size = sp.GetPieceSize()
238
+
239
+ # Load TFLite model
240
+ interpreter = tf.lite.Interpreter(model_path="models/dungen_wow_model.tflite")
241
+ interpreter.allocate_tensors()
242
+
243
+ # Use the function to generate a name
244
+ for _ in range(amount):
245
+ generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature, max_seq_len=max_seq_len)
246
+ stripped = generated_name.strip()
247
+ hate_speech = detect_hate_speech(stripped)
248
+ profanity = detect_profanity([stripped], language='All')
249
+ name = ''
250
+
251
+ if len(profanity) > 0:
252
+ name = "Profanity Detected"
253
+ else:
254
+ if hate_speech == ['Hate Speech']:
255
+ name = 'Hate Speech Detected'
256
+ elif hate_speech == ['Offensive Speech']:
257
+ name = 'Offensive Speech Detected'
258
+ elif hate_speech == ['No Hate and Offensive Speech']:
259
+ name = stripped
260
+ names.append(name)
261
+ return pd.DataFrame(names, columns=['Names'])
262
+
263
+ elif type == "Minecraft":
264
+ max_seq_len = 17 # For skyrim = 13, for terraria = 12
265
+ sp = spm.SentencePieceProcessor()
266
+ sp.load("models/minecraft_names.model")
267
+ amount = int(amount)
268
+ max_length = int(max_length)
269
+
270
+ names = []
271
+
272
+ # Define necessary variables
273
+ vocab_size = sp.GetPieceSize()
274
+
275
+ # Load TFLite model
276
+ interpreter = tf.lite.Interpreter(model_path="models/dungen_minecraft_model.tflite")
277
+ interpreter.allocate_tensors()
278
+
279
+ # Use the function to generate a name
280
+ for _ in range(amount):
281
+ generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature, max_seq_len=max_seq_len)
282
+ stripped = generated_name.strip()
283
+ hate_speech = detect_hate_speech(stripped)
284
+ profanity = detect_profanity([stripped], language='All')
285
+ name = ''
286
+
287
+ if len(profanity) > 0:
288
+ name = "Profanity Detected"
289
+ else:
290
+ if hate_speech == ['Hate Speech']:
291
+ name = 'Hate Speech Detected'
292
+ elif hate_speech == ['Offensive Speech']:
293
+ name = 'Offensive Speech Detected'
294
+ elif hate_speech == ['No Hate and Offensive Speech']:
295
+ name = stripped
296
+ names.append(name)
297
+ return pd.DataFrame(names, columns=['Names'])
298
+
299
+ elif type == "Dark Souls":
300
+ max_seq_len = 13 # For skyrim = 13, for terraria = 12
301
+ sp = spm.SentencePieceProcessor()
302
+ sp.load("models/dark_souls_names.model")
303
+ amount = int(amount)
304
+ max_length = int(max_length)
305
+
306
+ names = []
307
+
308
+ # Define necessary variables
309
+ vocab_size = sp.GetPieceSize()
310
+
311
+ # Load TFLite model
312
+ interpreter = tf.lite.Interpreter(model_path="models/dungen_dark_souls_model.tflite")
313
+ interpreter.allocate_tensors()
314
+
315
+ # Use the function to generate a name
316
+ for _ in range(amount):
317
+ generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature, max_seq_len=max_seq_len)
318
+ stripped = generated_name.strip()
319
+ hate_speech = detect_hate_speech(stripped)
320
+ profanity = detect_profanity([stripped], language='All')
321
+ name = ''
322
+
323
+ if len(profanity) > 0:
324
+ name = "Profanity Detected"
325
+ else:
326
+ if hate_speech == ['Hate Speech']:
327
+ name = 'Hate Speech Detected'
328
+ elif hate_speech == ['Offensive Speech']:
329
+ name = 'Offensive Speech Detected'
330
+ elif hate_speech == ['No Hate and Offensive Speech']:
331
+ name = stripped
332
+ names.append(name)
333
+ return pd.DataFrame(names, columns=['Names'])
334
+
335
  elif type == "Fantasy":
336
  max_seq_len = 16 # For fantasy, 16
337
  sp = spm.SentencePieceProcessor()
 
370
 
371
  demo = gr.Interface(
372
  fn=generateNames,
373
+ inputs=[gr.Radio(choices=["Terraria", "Skyrim", "Witcher", "WOW", "Minecraft", "Dark Souls", "Fantasy"], label="Choose a model for your request", value="Terraria"), gr.Slider(1,100, step=1, label='Amount of Names', info='How many names to generate, must be greater than 0'), gr.Slider(10, 60, value=30, step=1, label='Max Length', info='Max length of the generated word'), gr.Slider(0.1, 1, value=0.5, label='Temperature', info='Controls randomness of generation, higher values = more creative, lower values = more probalistic'), gr.Textbox('', label='Seed text (optional)', info='The starting text to begin with', max_lines=1, )],
374
  outputs=[gr.Dataframe(row_count = (2, "dynamic"), col_count=(1, "fixed"), label="Generated Names", headers=["Names"])],
375
  title='Dungen - Name Generator',
376
  description='A fun game-inspired name generator. For an example of how to create, and train your model, similar to this one, head over to: https://github.com/Infinitode/OPEN-ARC/tree/main/Project-5-TWNG. There you will find our base model, the dataset we used, and implementation code in the form of a Jupyter Notebook (exported from Kaggle).'