Spaces:
Sleeping
Sleeping
Infinitode Pty Ltd
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,132 +1,119 @@
|
|
1 |
-
import os
|
2 |
-
import random
|
3 |
-
import gradio as gr
|
4 |
-
import sentencepiece as spm
|
5 |
-
import numpy as np
|
6 |
-
import tflite_runtime.interpreter as tflite
|
7 |
-
|
8 |
-
def custom_pad_sequences(sequences, maxlen, padding='pre', value=0):
|
9 |
-
"""
|
10 |
-
Pads sequences to the same length.
|
11 |
-
|
12 |
-
:param sequences: List of lists, where each element is a sequence.
|
13 |
-
:param maxlen: Maximum length of all sequences.
|
14 |
-
:param padding: 'pre' or 'post', pad either before or after each sequence.
|
15 |
-
:param value: Float, padding value.
|
16 |
-
:return: Numpy array with dimensions (number_of_sequences, maxlen)
|
17 |
-
"""
|
18 |
-
padded_sequences = np.full((len(sequences), maxlen), value)
|
19 |
-
for i, seq in enumerate(sequences):
|
20 |
-
if padding == 'pre':
|
21 |
-
if len(seq) <= maxlen:
|
22 |
-
padded_sequences[i, -len(seq):] = seq
|
23 |
-
else:
|
24 |
-
padded_sequences[i, :] = seq[-maxlen:]
|
25 |
-
elif padding == 'post':
|
26 |
-
if len(seq) <= maxlen:
|
27 |
-
padded_sequences[i, :len(seq)] = seq
|
28 |
-
else:
|
29 |
-
padded_sequences[i, :] = seq[:maxlen]
|
30 |
-
return padded_sequences
|
31 |
-
|
32 |
-
def generate_random_name(interpreter, vocab_size, sp, max_length=10, temperature=0.5, seed_text=""):
|
33 |
-
# Get input and output tensors
|
34 |
-
input_details = interpreter.get_input_details()
|
35 |
-
output_details = interpreter.get_output_details()
|
36 |
-
|
37 |
-
if seed_text:
|
38 |
-
generated_name = seed_text
|
39 |
-
else:
|
40 |
-
random_index = np.random.randint(1, vocab_size)
|
41 |
-
random_token = sp.id_to_piece(random_index)
|
42 |
-
generated_name = random_token
|
43 |
-
|
44 |
-
for _ in range(max_length - 1):
|
45 |
-
token_list = sp.encode_as_ids(generated_name)
|
46 |
-
# Pad to the correct length expected by the model
|
47 |
-
token_list = custom_pad_sequences([token_list], maxlen=max_seq_len, padding='pre')
|
48 |
-
|
49 |
-
# Convert token_list to FLOAT32 before setting the tensor
|
50 |
-
token_list = token_list.astype(np.float32)
|
51 |
-
|
52 |
-
# Set the input tensor
|
53 |
-
interpreter.set_tensor(input_details[0]['index'], token_list)
|
54 |
-
|
55 |
-
# Run inference
|
56 |
-
interpreter.invoke()
|
57 |
-
|
58 |
-
# Get the output tensor
|
59 |
-
predicted = interpreter.get_tensor(output_details[0]['index'])[0]
|
60 |
-
|
61 |
-
# Apply temperature to predictions
|
62 |
-
predicted = np.log(predicted + 1e-8) / temperature
|
63 |
-
predicted = np.exp(predicted) / np.sum(np.exp(predicted))
|
64 |
-
|
65 |
-
# Sample from the distribution
|
66 |
-
next_index = np.random.choice(range(vocab_size), p=predicted)
|
67 |
-
next_index = int(next_index)
|
68 |
-
next_token = sp.id_to_piece(next_index)
|
69 |
-
|
70 |
-
generated_name += next_token
|
71 |
-
|
72 |
-
# Decode the generated subword tokens into a string
|
73 |
-
decoded_name = sp.decode_pieces(generated_name.split())
|
74 |
-
|
75 |
-
# Stop if end token is predicted (optional)
|
76 |
-
if next_token == '' or len(decoded_name) > max_length:
|
77 |
-
break
|
78 |
-
|
79 |
-
decoded_name = decoded_name.replace("▁", " ")
|
80 |
-
decoded_name = decoded_name.replace("</s>", "")
|
81 |
-
generated_name = decoded_name.rsplit(' ', 1)[0]
|
82 |
-
generated_name = generated_name[0].upper() + generated_name[1:]
|
83 |
-
|
84 |
-
# Split the name and check the last part
|
85 |
-
parts = generated_name.split()
|
86 |
-
if parts and len(parts[-1]) < 3:
|
87 |
-
generated_name = " ".join(parts[:-1])
|
88 |
-
|
89 |
-
return generated_name.strip()
|
90 |
-
|
91 |
-
def generateTerrariaNames(amount, max_length=30, temperature=0.5, seed_text=""):
|
92 |
-
sp = spm.SentencePieceProcessor()
|
93 |
-
sp.load("models/terraria_names.model")
|
94 |
-
amount = int(amount)
|
95 |
-
|
96 |
-
names = []
|
97 |
-
|
98 |
-
# Define necessary variables
|
99 |
-
vocab_size = sp.GetPieceSize()
|
100 |
-
max_seq_len = 12 # For skyrim = 13, for terraria = 12
|
101 |
-
|
102 |
-
# Load TFLite model
|
103 |
-
interpreter = tflite.Interpreter(model_path="models/dungen_terraria_model.tflite")
|
104 |
-
interpreter.allocate_tensors()
|
105 |
-
|
106 |
-
# Use the function to generate a name
|
107 |
-
# Assuming `vocab_size` and `sp` (SentencePiece processor) are defined elsewhere
|
108 |
-
for _ in range(amount):
|
109 |
-
generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature)
|
110 |
-
names.append(generated_name)
|
111 |
-
return names
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
gr.inputs.Number(default=1, maximum=25, label="Amount"),
|
121 |
-
gr.inputs.Slider(minimum=1, maximum=100, default=30, label="Max Length"),
|
122 |
-
gr.inputs.Slider(minimum=0.1, maximum=1.0, default=0.5, label="Temperature"),
|
123 |
-
gr.inputs.Textbox(default="", label="Seed Text (optional)")
|
124 |
-
],
|
125 |
-
outputs="text",
|
126 |
-
title="Terraria Name Generator",
|
127 |
-
description="Generate random Terraria names using a TFLite model."
|
128 |
-
)
|
129 |
-
|
130 |
-
|
131 |
-
if __name__ == "__main__":
|
132 |
-
iface.launch()
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
import gradio as gr
|
4 |
+
import sentencepiece as spm
|
5 |
+
import numpy as np
|
6 |
+
import tflite_runtime.interpreter as tflite
|
7 |
+
|
8 |
+
def custom_pad_sequences(sequences, maxlen, padding='pre', value=0):
|
9 |
+
"""
|
10 |
+
Pads sequences to the same length.
|
11 |
+
|
12 |
+
:param sequences: List of lists, where each element is a sequence.
|
13 |
+
:param maxlen: Maximum length of all sequences.
|
14 |
+
:param padding: 'pre' or 'post', pad either before or after each sequence.
|
15 |
+
:param value: Float, padding value.
|
16 |
+
:return: Numpy array with dimensions (number_of_sequences, maxlen)
|
17 |
+
"""
|
18 |
+
padded_sequences = np.full((len(sequences), maxlen), value)
|
19 |
+
for i, seq in enumerate(sequences):
|
20 |
+
if padding == 'pre':
|
21 |
+
if len(seq) <= maxlen:
|
22 |
+
padded_sequences[i, -len(seq):] = seq
|
23 |
+
else:
|
24 |
+
padded_sequences[i, :] = seq[-maxlen:]
|
25 |
+
elif padding == 'post':
|
26 |
+
if len(seq) <= maxlen:
|
27 |
+
padded_sequences[i, :len(seq)] = seq
|
28 |
+
else:
|
29 |
+
padded_sequences[i, :] = seq[:maxlen]
|
30 |
+
return padded_sequences
|
31 |
+
|
32 |
+
def generate_random_name(interpreter, vocab_size, sp, max_length=10, temperature=0.5, seed_text=""):
|
33 |
+
# Get input and output tensors
|
34 |
+
input_details = interpreter.get_input_details()
|
35 |
+
output_details = interpreter.get_output_details()
|
36 |
+
|
37 |
+
if seed_text:
|
38 |
+
generated_name = seed_text
|
39 |
+
else:
|
40 |
+
random_index = np.random.randint(1, vocab_size)
|
41 |
+
random_token = sp.id_to_piece(random_index)
|
42 |
+
generated_name = random_token
|
43 |
+
|
44 |
+
for _ in range(max_length - 1):
|
45 |
+
token_list = sp.encode_as_ids(generated_name)
|
46 |
+
# Pad to the correct length expected by the model
|
47 |
+
token_list = custom_pad_sequences([token_list], maxlen=max_seq_len, padding='pre')
|
48 |
+
|
49 |
+
# Convert token_list to FLOAT32 before setting the tensor
|
50 |
+
token_list = token_list.astype(np.float32)
|
51 |
+
|
52 |
+
# Set the input tensor
|
53 |
+
interpreter.set_tensor(input_details[0]['index'], token_list)
|
54 |
+
|
55 |
+
# Run inference
|
56 |
+
interpreter.invoke()
|
57 |
+
|
58 |
+
# Get the output tensor
|
59 |
+
predicted = interpreter.get_tensor(output_details[0]['index'])[0]
|
60 |
+
|
61 |
+
# Apply temperature to predictions
|
62 |
+
predicted = np.log(predicted + 1e-8) / temperature
|
63 |
+
predicted = np.exp(predicted) / np.sum(np.exp(predicted))
|
64 |
+
|
65 |
+
# Sample from the distribution
|
66 |
+
next_index = np.random.choice(range(vocab_size), p=predicted)
|
67 |
+
next_index = int(next_index)
|
68 |
+
next_token = sp.id_to_piece(next_index)
|
69 |
+
|
70 |
+
generated_name += next_token
|
71 |
+
|
72 |
+
# Decode the generated subword tokens into a string
|
73 |
+
decoded_name = sp.decode_pieces(generated_name.split())
|
74 |
+
|
75 |
+
# Stop if end token is predicted (optional)
|
76 |
+
if next_token == '' or len(decoded_name) > max_length:
|
77 |
+
break
|
78 |
+
|
79 |
+
decoded_name = decoded_name.replace("▁", " ")
|
80 |
+
decoded_name = decoded_name.replace("</s>", "")
|
81 |
+
generated_name = decoded_name.rsplit(' ', 1)[0]
|
82 |
+
generated_name = generated_name[0].upper() + generated_name[1:]
|
83 |
+
|
84 |
+
# Split the name and check the last part
|
85 |
+
parts = generated_name.split()
|
86 |
+
if parts and len(parts[-1]) < 3:
|
87 |
+
generated_name = " ".join(parts[:-1])
|
88 |
+
|
89 |
+
return generated_name.strip()
|
90 |
+
|
91 |
+
def generateTerrariaNames(amount, max_length=30, temperature=0.5, seed_text=""):
|
92 |
+
sp = spm.SentencePieceProcessor()
|
93 |
+
sp.load("models/terraria_names.model")
|
94 |
+
amount = int(amount)
|
95 |
+
|
96 |
+
names = []
|
97 |
+
|
98 |
+
# Define necessary variables
|
99 |
+
vocab_size = sp.GetPieceSize()
|
100 |
+
max_seq_len = 12 # For skyrim = 13, for terraria = 12
|
101 |
+
|
102 |
+
# Load TFLite model
|
103 |
+
interpreter = tflite.Interpreter(model_path="models/dungen_terraria_model.tflite")
|
104 |
+
interpreter.allocate_tensors()
|
105 |
+
|
106 |
+
# Use the function to generate a name
|
107 |
+
# Assuming `vocab_size` and `sp` (SentencePiece processor) are defined elsewhere
|
108 |
+
for _ in range(amount):
|
109 |
+
generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature)
|
110 |
+
names.append(generated_name)
|
111 |
+
return names
|
112 |
+
|
113 |
+
demo = gr.Interface(
|
114 |
+
fn=generateTerrariaNames,
|
115 |
+
inputs=[gr.Number(1,25), gr.Slider(10, 60) gr.Slider(0.01, 1), gr.Text(0,10)],
|
116 |
+
outputs=["text"],
|
117 |
+
)
|
118 |
+
|
119 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|