JohanBeytell commited on
Commit
d0d758e
·
verified ·
1 Parent(s): 170eefe

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -1
app.py CHANGED
@@ -188,6 +188,42 @@ def generateNames(type, amount, max_length=30, temperature=0.5, seed_text=""):
188
  names.append(name)
189
  return pd.DataFrame(names, columns=['Names'])
190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
191
  elif type == "Fantasy":
192
  max_seq_len = 16 # For fantasy, 16
193
  sp = spm.SentencePieceProcessor()
@@ -226,7 +262,7 @@ def generateNames(type, amount, max_length=30, temperature=0.5, seed_text=""):
226
 
227
  demo = gr.Interface(
228
  fn=generateNames,
229
- inputs=[gr.Radio(choices=["Terraria", "Skyrim", "Fantasy"], label="Choose a model for your request", value="Terraria"), gr.Slider(1,100, step=1, label='Amount of Names', info='How many names to generate, must be greater than 0'), gr.Slider(10, 60, value=30, step=1, label='Max Length', info='Max length of the generated word'), gr.Slider(0.1, 1, value=0.5, label='Temperature', info='Controls randomness of generation, higher values = more creative, lower values = more probalistic'), gr.Textbox('', label='Seed text (optional)', info='The starting text to begin with', max_lines=1, )],
230
  outputs=[gr.Dataframe(row_count = (2, "dynamic"), col_count=(1, "fixed"), label="Generated Names", headers=["Names"])],
231
  title='Dungen - Name Generator',
232
  description='A fun game-inspired name generator. For an example of how to create, and train your model, similar to this one, head over to: https://github.com/Infinitode/OPEN-ARC/tree/main/Project-5-TWNG. There you will find our base model, the dataset we used, and implementation code in the form of a Jupyter Notebook (exported from Kaggle).'
 
188
  names.append(name)
189
  return pd.DataFrame(names, columns=['Names'])
190
 
191
+ elif type == "Witcher":
192
+ max_seq_len = 20 # For skyrim = 13, for terraria = 12
193
+ sp = spm.SentencePieceProcessor()
194
+ sp.load("models/witcher_names.model")
195
+ amount = int(amount)
196
+ max_length = int(max_length)
197
+
198
+ names = []
199
+
200
+ # Define necessary variables
201
+ vocab_size = sp.GetPieceSize()
202
+
203
+ # Load TFLite model
204
+ interpreter = tf.lite.Interpreter(model_path="models/dungen_witcher_model.tflite")
205
+ interpreter.allocate_tensors()
206
+
207
+ # Use the function to generate a name
208
+ for _ in range(amount):
209
+ generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature, max_seq_len=max_seq_len)
210
+ stripped = generated_name.strip()
211
+ hate_speech = detect_hate_speech(stripped)
212
+ profanity = detect_profanity([stripped], language='All')
213
+ name = ''
214
+
215
+ if profanity > 0:
216
+ name = "Profanity Detected"
217
+ else:
218
+ if hate_speech == ['Hate Speech']:
219
+ name = 'Hate Speech Detected'
220
+ elif hate_speech == ['Offensive Speech']:
221
+ name = 'Offensive Speech Detected'
222
+ elif hate_speech == ['No Hate and Offensive Speech']:
223
+ name = stripped
224
+ names.append(name)
225
+ return pd.DataFrame(names, columns=['Names'])
226
+
227
  elif type == "Fantasy":
228
  max_seq_len = 16 # For fantasy, 16
229
  sp = spm.SentencePieceProcessor()
 
262
 
263
  demo = gr.Interface(
264
  fn=generateNames,
265
+ inputs=[gr.Radio(choices=["Terraria", "Skyrim", "Witcher", "Fantasy"], label="Choose a model for your request", value="Terraria"), gr.Slider(1,100, step=1, label='Amount of Names', info='How many names to generate, must be greater than 0'), gr.Slider(10, 60, value=30, step=1, label='Max Length', info='Max length of the generated word'), gr.Slider(0.1, 1, value=0.5, label='Temperature', info='Controls randomness of generation, higher values = more creative, lower values = more probalistic'), gr.Textbox('', label='Seed text (optional)', info='The starting text to begin with', max_lines=1, )],
266
  outputs=[gr.Dataframe(row_count = (2, "dynamic"), col_count=(1, "fixed"), label="Generated Names", headers=["Names"])],
267
  title='Dungen - Name Generator',
268
  description='A fun game-inspired name generator. For an example of how to create, and train your model, similar to this one, head over to: https://github.com/Infinitode/OPEN-ARC/tree/main/Project-5-TWNG. There you will find our base model, the dataset we used, and implementation code in the form of a Jupyter Notebook (exported from Kaggle).'