Spaces:
Sleeping
Sleeping
Infinitode Pty Ltd
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,62 @@ import numpy as np
|
|
6 |
import pandas as pd
|
7 |
import tensorflow as tf
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
def custom_pad_sequences(sequences, maxlen, padding='pre', value=0):
|
10 |
"""
|
11 |
Pads sequences to the same length.
|
@@ -89,60 +145,4 @@ def generate_random_name(interpreter, vocab_size, sp, max_length=10, temperature
|
|
89 |
if parts and len(parts[-1]) < 3:
|
90 |
generated_name = " ".join(parts[:-1])
|
91 |
|
92 |
-
return generated_name.strip()
|
93 |
-
|
94 |
-
def generateNames(type, amount, max_length=30, temperature=0.5, seed_text=""):
|
95 |
-
if type == "Terraria":
|
96 |
-
max_seq_len = 12 # For skyrim = 13, for terraria = 12
|
97 |
-
sp = spm.SentencePieceProcessor()
|
98 |
-
sp.load("models/terraria_names.model")
|
99 |
-
amount = int(amount)
|
100 |
-
max_length = int(max_length)
|
101 |
-
|
102 |
-
names = []
|
103 |
-
|
104 |
-
# Define necessary variables
|
105 |
-
vocab_size = sp.GetPieceSize()
|
106 |
-
|
107 |
-
# Load TFLite model
|
108 |
-
interpreter = tf.lite.Interpreter(model_path="models/dungen_terraria_model.tflite")
|
109 |
-
interpreter.allocate_tensors()
|
110 |
-
|
111 |
-
# Use the function to generate a name
|
112 |
-
# Assuming `vocab_size` and `sp` (SentencePiece processor) are defined elsewhere
|
113 |
-
for _ in range(amount):
|
114 |
-
generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature)
|
115 |
-
names.append(generated_name)
|
116 |
-
return pd.DataFrame(names, columns=['Names'])
|
117 |
-
elif type == "Skyrim":
|
118 |
-
max_seq_len = 13 # For skyrim = 13, for terraria = 12
|
119 |
-
sp = spm.SentencePieceProcessor()
|
120 |
-
sp.load("models/skyrim_names.model")
|
121 |
-
amount = int(amount)
|
122 |
-
max_length = int(max_length)
|
123 |
-
|
124 |
-
names = []
|
125 |
-
|
126 |
-
# Define necessary variables
|
127 |
-
vocab_size = sp.GetPieceSize()
|
128 |
-
|
129 |
-
# Load TFLite model
|
130 |
-
interpreter = tf.lite.Interpreter(model_path="models/dungen_skyrim_model.tflite")
|
131 |
-
interpreter.allocate_tensors()
|
132 |
-
|
133 |
-
# Use the function to generate a name
|
134 |
-
# Assuming `vocab_size` and `sp` (SentencePiece processor) are defined elsewhere
|
135 |
-
for _ in range(amount):
|
136 |
-
generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature)
|
137 |
-
names.append(generated_name)
|
138 |
-
return pd.DataFrame(names, columns=['Names'])
|
139 |
-
|
140 |
-
demo = gr.Interface(
|
141 |
-
fn=generateNames,
|
142 |
-
inputs=[gr.Radio(choices=["Terraria", "Skyrim"], label="Choose a model for your request"), gr.Slider(1,25, step=1, label='Amount of Names', info='How many names to generate, must be greater than 0'), gr.Slider(10, 60, value=30, step=1, label='Max Length', info='Max length of the generated word'), gr.Slider(0.1, 1, value=0.5, label='Temperature', info='Controls randomness of generation, higher values = more creative, lower values = more probalistic'), gr.Textbox('', label='Seed text (optional)', info='The starting text to begin with', max_lines=1, )],
|
143 |
-
outputs=[gr.Dataframe(row_count = (2, "dynamic"), col_count=(1, "fixed"), label="Generated Names", headers=["Names"])],
|
144 |
-
title='Dungen - Name Generator',
|
145 |
-
description='A fun game-inspired name generator. For an example of how to create, and train your model, similar to this one, head over to: https://github.com/infinitode/open-arc/tree/main/project-5-twng/. There you will find our base model, the dataset we used, and implementation code in the form of a Jupyter Notebook (exported from Kaggle).'
|
146 |
-
)
|
147 |
-
|
148 |
-
demo.launch()
|
|
|
6 |
import pandas as pd
|
7 |
import tensorflow as tf
|
8 |
|
9 |
+
def generateNames(type, amount, max_length=30, temperature=0.5, seed_text=""):
|
10 |
+
if type == "Terraria":
|
11 |
+
max_seq_len = 12 # For skyrim = 13, for terraria = 12
|
12 |
+
sp = spm.SentencePieceProcessor()
|
13 |
+
sp.load("models/terraria_names.model")
|
14 |
+
amount = int(amount)
|
15 |
+
max_length = int(max_length)
|
16 |
+
|
17 |
+
names = []
|
18 |
+
|
19 |
+
# Define necessary variables
|
20 |
+
vocab_size = sp.GetPieceSize()
|
21 |
+
|
22 |
+
# Load TFLite model
|
23 |
+
interpreter = tf.lite.Interpreter(model_path="models/dungen_terraria_model.tflite")
|
24 |
+
interpreter.allocate_tensors()
|
25 |
+
|
26 |
+
# Use the function to generate a name
|
27 |
+
# Assuming `vocab_size` and `sp` (SentencePiece processor) are defined elsewhere
|
28 |
+
for _ in range(amount):
|
29 |
+
generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature)
|
30 |
+
names.append(generated_name)
|
31 |
+
return pd.DataFrame(names, columns=['Names'])
|
32 |
+
elif type == "Skyrim":
|
33 |
+
max_seq_len = 13 # For skyrim = 13, for terraria = 12
|
34 |
+
sp = spm.SentencePieceProcessor()
|
35 |
+
sp.load("models/skyrim_names.model")
|
36 |
+
amount = int(amount)
|
37 |
+
max_length = int(max_length)
|
38 |
+
|
39 |
+
names = []
|
40 |
+
|
41 |
+
# Define necessary variables
|
42 |
+
vocab_size = sp.GetPieceSize()
|
43 |
+
|
44 |
+
# Load TFLite model
|
45 |
+
interpreter = tf.lite.Interpreter(model_path="models/dungen_skyrim_model.tflite")
|
46 |
+
interpreter.allocate_tensors()
|
47 |
+
|
48 |
+
# Use the function to generate a name
|
49 |
+
# Assuming `vocab_size` and `sp` (SentencePiece processor) are defined elsewhere
|
50 |
+
for _ in range(amount):
|
51 |
+
generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature)
|
52 |
+
names.append(generated_name)
|
53 |
+
return pd.DataFrame(names, columns=['Names'])
|
54 |
+
|
55 |
+
demo = gr.Interface(
|
56 |
+
fn=generateNames,
|
57 |
+
inputs=[gr.Radio(choices=["Terraria", "Skyrim"], label="Choose a model for your request"), gr.Slider(1,25, step=1, label='Amount of Names', info='How many names to generate, must be greater than 0'), gr.Slider(10, 60, value=30, step=1, label='Max Length', info='Max length of the generated word'), gr.Slider(0.1, 1, value=0.5, label='Temperature', info='Controls randomness of generation, higher values = more creative, lower values = more probalistic'), gr.Textbox('', label='Seed text (optional)', info='The starting text to begin with', max_lines=1, )],
|
58 |
+
outputs=[gr.Dataframe(row_count = (2, "dynamic"), col_count=(1, "fixed"), label="Generated Names", headers=["Names"])],
|
59 |
+
title='Dungen - Name Generator',
|
60 |
+
description='A fun game-inspired name generator. For an example of how to create, and train your model, similar to this one, head over to: https://github.com/infinitode/open-arc/tree/main/project-5-twng/. There you will find our base model, the dataset we used, and implementation code in the form of a Jupyter Notebook (exported from Kaggle).'
|
61 |
+
)
|
62 |
+
|
63 |
+
demo.launch()
|
64 |
+
|
65 |
def custom_pad_sequences(sequences, maxlen, padding='pre', value=0):
|
66 |
"""
|
67 |
Pads sequences to the same length.
|
|
|
145 |
if parts and len(parts[-1]) < 3:
|
146 |
generated_name = " ".join(parts[:-1])
|
147 |
|
148 |
+
return generated_name.strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|