Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -332,6 +332,402 @@ def generateNames(type, amount, max_length=30, temperature=0.5, seed_text=""):
|
|
332 |
names.append(name)
|
333 |
return pd.DataFrame(names, columns=['Names'])
|
334 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
335 |
elif type == "Fantasy":
|
336 |
max_seq_len = 16 # For fantasy, 16
|
337 |
sp = spm.SentencePieceProcessor()
|
@@ -370,10 +766,10 @@ def generateNames(type, amount, max_length=30, temperature=0.5, seed_text=""):
|
|
370 |
|
371 |
demo = gr.Interface(
|
372 |
fn=generateNames,
|
373 |
-
inputs=[gr.Radio(choices=["Terraria", "Skyrim", "Witcher", "WOW", "Minecraft", "Dark Souls", "Fantasy"], label="Choose a model for your request", value="Terraria"), gr.Slider(1,100, step=1, label='Amount of Names', info='How many names to generate, must be greater than 0'), gr.Slider(10, 60, value=30, step=1, label='Max Length', info='Max length of the generated word'), gr.Slider(0.1, 1, value=0.5, label='Temperature', info='Controls randomness of generation, higher values = more creative, lower values = more probalistic'), gr.Textbox('', label='Seed text (optional)', info='The starting text to begin with', max_lines=1, )],
|
374 |
outputs=[gr.Dataframe(row_count = (2, "dynamic"), col_count=(1, "fixed"), label="Generated Names", headers=["Names"])],
|
375 |
title='Dungen - Name Generator',
|
376 |
-
description='A fun game-inspired name generator. For an example of how to create, and train your model,
|
377 |
)
|
378 |
|
379 |
demo.launch()
|
|
|
332 |
names.append(name)
|
333 |
return pd.DataFrame(names, columns=['Names'])
|
334 |
|
335 |
+
elif type == "Final Fantasy":
|
336 |
+
max_seq_len = 14
|
337 |
+
sp = spm.SentencePieceProcessor()
|
338 |
+
sp.load("models/final_fantasy_names.model")
|
339 |
+
amount = int(amount)
|
340 |
+
max_length = int(max_length)
|
341 |
+
|
342 |
+
names = []
|
343 |
+
|
344 |
+
# Define necessary variables
|
345 |
+
vocab_size = sp.GetPieceSize()
|
346 |
+
|
347 |
+
# Load TFLite model
|
348 |
+
interpreter = tf.lite.Interpreter(model_path="models/dungen_final_fantasy_model.tflite")
|
349 |
+
interpreter.allocate_tensors()
|
350 |
+
|
351 |
+
# Use the function to generate a name
|
352 |
+
for _ in range(amount):
|
353 |
+
generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature, max_seq_len=max_seq_len)
|
354 |
+
stripped = generated_name.strip()
|
355 |
+
hate_speech = detect_hate_speech(stripped)
|
356 |
+
profanity = detect_profanity([stripped], language='All')
|
357 |
+
name = ''
|
358 |
+
|
359 |
+
if len(profanity) > 0:
|
360 |
+
name = "Profanity Detected"
|
361 |
+
else:
|
362 |
+
if hate_speech == ['Hate Speech']:
|
363 |
+
name = 'Hate Speech Detected'
|
364 |
+
elif hate_speech == ['Offensive Speech']:
|
365 |
+
name = 'Offensive Speech Detected'
|
366 |
+
elif hate_speech == ['No Hate and Offensive Speech']:
|
367 |
+
name = stripped
|
368 |
+
names.append(name)
|
369 |
+
return pd.DataFrame(names, columns=['Names'])
|
370 |
+
|
371 |
+
elif type == "Elden Ring":
|
372 |
+
max_seq_len = 18
|
373 |
+
sp = spm.SentencePieceProcessor()
|
374 |
+
sp.load("models/elden_ring_names.model")
|
375 |
+
amount = int(amount)
|
376 |
+
max_length = int(max_length)
|
377 |
+
|
378 |
+
names = []
|
379 |
+
|
380 |
+
# Define necessary variables
|
381 |
+
vocab_size = sp.GetPieceSize()
|
382 |
+
|
383 |
+
# Load TFLite model
|
384 |
+
interpreter = tf.lite.Interpreter(model_path="models/dungen_elden_ring_model.tflite")
|
385 |
+
interpreter.allocate_tensors()
|
386 |
+
|
387 |
+
# Use the function to generate a name
|
388 |
+
for _ in range(amount):
|
389 |
+
generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature, max_seq_len=max_seq_len)
|
390 |
+
stripped = generated_name.strip()
|
391 |
+
hate_speech = detect_hate_speech(stripped)
|
392 |
+
profanity = detect_profanity([stripped], language='All')
|
393 |
+
name = ''
|
394 |
+
|
395 |
+
if len(profanity) > 0:
|
396 |
+
name = "Profanity Detected"
|
397 |
+
else:
|
398 |
+
if hate_speech == ['Hate Speech']:
|
399 |
+
name = 'Hate Speech Detected'
|
400 |
+
elif hate_speech == ['Offensive Speech']:
|
401 |
+
name = 'Offensive Speech Detected'
|
402 |
+
elif hate_speech == ['No Hate and Offensive Speech']:
|
403 |
+
name = stripped
|
404 |
+
names.append(name)
|
405 |
+
return pd.DataFrame(names, columns=['Names'])
|
406 |
+
|
407 |
+
elif type == "Zelda":
|
408 |
+
max_seq_len = 15
|
409 |
+
sp = spm.SentencePieceProcessor()
|
410 |
+
sp.load("models/zelda_names.model")
|
411 |
+
amount = int(amount)
|
412 |
+
max_length = int(max_length)
|
413 |
+
|
414 |
+
names = []
|
415 |
+
|
416 |
+
# Define necessary variables
|
417 |
+
vocab_size = sp.GetPieceSize()
|
418 |
+
|
419 |
+
# Load TFLite model
|
420 |
+
interpreter = tf.lite.Interpreter(model_path="models/dungen_zelda_model.tflite")
|
421 |
+
interpreter.allocate_tensors()
|
422 |
+
|
423 |
+
# Use the function to generate a name
|
424 |
+
for _ in range(amount):
|
425 |
+
generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature, max_seq_len=max_seq_len)
|
426 |
+
stripped = generated_name.strip()
|
427 |
+
hate_speech = detect_hate_speech(stripped)
|
428 |
+
profanity = detect_profanity([stripped], language='All')
|
429 |
+
name = ''
|
430 |
+
|
431 |
+
if len(profanity) > 0:
|
432 |
+
name = "Profanity Detected"
|
433 |
+
else:
|
434 |
+
if hate_speech == ['Hate Speech']:
|
435 |
+
name = 'Hate Speech Detected'
|
436 |
+
elif hate_speech == ['Offensive Speech']:
|
437 |
+
name = 'Offensive Speech Detected'
|
438 |
+
elif hate_speech == ['No Hate and Offensive Speech']:
|
439 |
+
name = stripped
|
440 |
+
names.append(name)
|
441 |
+
return pd.DataFrame(names, columns=['Names'])
|
442 |
+
|
443 |
+
elif type == "Dragon Age":
|
444 |
+
max_seq_len = 16 # For skyrim = 13, for terraria = 12
|
445 |
+
sp = spm.SentencePieceProcessor()
|
446 |
+
sp.load("models/dragon_age_names.model")
|
447 |
+
amount = int(amount)
|
448 |
+
max_length = int(max_length)
|
449 |
+
|
450 |
+
names = []
|
451 |
+
|
452 |
+
# Define necessary variables
|
453 |
+
vocab_size = sp.GetPieceSize()
|
454 |
+
|
455 |
+
# Load TFLite model
|
456 |
+
interpreter = tf.lite.Interpreter(model_path="models/dungen_dragon_age_model.tflite")
|
457 |
+
interpreter.allocate_tensors()
|
458 |
+
|
459 |
+
# Use the function to generate a name
|
460 |
+
for _ in range(amount):
|
461 |
+
generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature, max_seq_len=max_seq_len)
|
462 |
+
stripped = generated_name.strip()
|
463 |
+
hate_speech = detect_hate_speech(stripped)
|
464 |
+
profanity = detect_profanity([stripped], language='All')
|
465 |
+
name = ''
|
466 |
+
|
467 |
+
if len(profanity) > 0:
|
468 |
+
name = "Profanity Detected"
|
469 |
+
else:
|
470 |
+
if hate_speech == ['Hate Speech']:
|
471 |
+
name = 'Hate Speech Detected'
|
472 |
+
elif hate_speech == ['Offensive Speech']:
|
473 |
+
name = 'Offensive Speech Detected'
|
474 |
+
elif hate_speech == ['No Hate and Offensive Speech']:
|
475 |
+
name = stripped
|
476 |
+
names.append(name)
|
477 |
+
return pd.DataFrame(names, columns=['Names'])
|
478 |
+
|
479 |
+
elif type == "Fallout":
|
480 |
+
max_seq_len = 13
|
481 |
+
sp = spm.SentencePieceProcessor()
|
482 |
+
sp.load("models/fallout_names.model")
|
483 |
+
amount = int(amount)
|
484 |
+
max_length = int(max_length)
|
485 |
+
|
486 |
+
names = []
|
487 |
+
|
488 |
+
# Define necessary variables
|
489 |
+
vocab_size = sp.GetPieceSize()
|
490 |
+
|
491 |
+
# Load TFLite model
|
492 |
+
interpreter = tf.lite.Interpreter(model_path="models/dungen_fallout_model.tflite")
|
493 |
+
interpreter.allocate_tensors()
|
494 |
+
|
495 |
+
# Use the function to generate a name
|
496 |
+
for _ in range(amount):
|
497 |
+
generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature, max_seq_len=max_seq_len)
|
498 |
+
stripped = generated_name.strip()
|
499 |
+
hate_speech = detect_hate_speech(stripped)
|
500 |
+
profanity = detect_profanity([stripped], language='All')
|
501 |
+
name = ''
|
502 |
+
|
503 |
+
if len(profanity) > 0:
|
504 |
+
name = "Profanity Detected"
|
505 |
+
else:
|
506 |
+
if hate_speech == ['Hate Speech']:
|
507 |
+
name = 'Hate Speech Detected'
|
508 |
+
elif hate_speech == ['Offensive Speech']:
|
509 |
+
name = 'Offensive Speech Detected'
|
510 |
+
elif hate_speech == ['No Hate and Offensive Speech']:
|
511 |
+
name = stripped
|
512 |
+
names.append(name)
|
513 |
+
return pd.DataFrame(names, columns=['Names'])
|
514 |
+
|
515 |
+
elif type == "Darkest Dungeon":
|
516 |
+
max_seq_len = 14
|
517 |
+
sp = spm.SentencePieceProcessor()
|
518 |
+
sp.load("models/darkest_dungeon_names.model")
|
519 |
+
amount = int(amount)
|
520 |
+
max_length = int(max_length)
|
521 |
+
|
522 |
+
names = []
|
523 |
+
|
524 |
+
# Define necessary variables
|
525 |
+
vocab_size = sp.GetPieceSize()
|
526 |
+
|
527 |
+
# Load TFLite model
|
528 |
+
interpreter = tf.lite.Interpreter(model_path="models/dungen_darkest_dungeon_model.tflite")
|
529 |
+
interpreter.allocate_tensors()
|
530 |
+
|
531 |
+
# Use the function to generate a name
|
532 |
+
for _ in range(amount):
|
533 |
+
generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature, max_seq_len=max_seq_len)
|
534 |
+
stripped = generated_name.strip()
|
535 |
+
hate_speech = detect_hate_speech(stripped)
|
536 |
+
profanity = detect_profanity([stripped], language='All')
|
537 |
+
name = ''
|
538 |
+
|
539 |
+
if len(profanity) > 0:
|
540 |
+
name = "Profanity Detected"
|
541 |
+
else:
|
542 |
+
if hate_speech == ['Hate Speech']:
|
543 |
+
name = 'Hate Speech Detected'
|
544 |
+
elif hate_speech == ['Offensive Speech']:
|
545 |
+
name = 'Offensive Speech Detected'
|
546 |
+
elif hate_speech == ['No Hate and Offensive Speech']:
|
547 |
+
name = stripped
|
548 |
+
names.append(name)
|
549 |
+
return pd.DataFrame(names, columns=['Names'])
|
550 |
+
|
551 |
+
elif type == "Monster Hunter":
|
552 |
+
max_seq_len = 15
|
553 |
+
sp = spm.SentencePieceProcessor()
|
554 |
+
sp.load("models/monster_hunter_names.model")
|
555 |
+
amount = int(amount)
|
556 |
+
max_length = int(max_length)
|
557 |
+
|
558 |
+
names = []
|
559 |
+
|
560 |
+
# Define necessary variables
|
561 |
+
vocab_size = sp.GetPieceSize()
|
562 |
+
|
563 |
+
# Load TFLite model
|
564 |
+
interpreter = tf.lite.Interpreter(model_path="models/dungen_monster_hunter_model.tflite")
|
565 |
+
interpreter.allocate_tensors()
|
566 |
+
|
567 |
+
# Use the function to generate a name
|
568 |
+
for _ in range(amount):
|
569 |
+
generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature, max_seq_len=max_seq_len)
|
570 |
+
stripped = generated_name.strip()
|
571 |
+
hate_speech = detect_hate_speech(stripped)
|
572 |
+
profanity = detect_profanity([stripped], language='All')
|
573 |
+
name = ''
|
574 |
+
|
575 |
+
if len(profanity) > 0:
|
576 |
+
name = "Profanity Detected"
|
577 |
+
else:
|
578 |
+
if hate_speech == ['Hate Speech']:
|
579 |
+
name = 'Hate Speech Detected'
|
580 |
+
elif hate_speech == ['Offensive Speech']:
|
581 |
+
name = 'Offensive Speech Detected'
|
582 |
+
elif hate_speech == ['No Hate and Offensive Speech']:
|
583 |
+
name = stripped
|
584 |
+
names.append(name)
|
585 |
+
return pd.DataFrame(names, columns=['Names'])
|
586 |
+
|
587 |
+
elif type == "Bloodborne":
|
588 |
+
max_seq_len = 12
|
589 |
+
sp = spm.SentencePieceProcessor()
|
590 |
+
sp.load("models/bloodborne_names.model")
|
591 |
+
amount = int(amount)
|
592 |
+
max_length = int(max_length)
|
593 |
+
|
594 |
+
names = []
|
595 |
+
|
596 |
+
# Define necessary variables
|
597 |
+
vocab_size = sp.GetPieceSize()
|
598 |
+
|
599 |
+
# Load TFLite model
|
600 |
+
interpreter = tf.lite.Interpreter(model_path="models/dungen_bloodborne_model.tflite")
|
601 |
+
interpreter.allocate_tensors()
|
602 |
+
|
603 |
+
# Use the function to generate a name
|
604 |
+
for _ in range(amount):
|
605 |
+
generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature, max_seq_len=max_seq_len)
|
606 |
+
stripped = generated_name.strip()
|
607 |
+
hate_speech = detect_hate_speech(stripped)
|
608 |
+
profanity = detect_profanity([stripped], language='All')
|
609 |
+
name = ''
|
610 |
+
|
611 |
+
if len(profanity) > 0:
|
612 |
+
name = "Profanity Detected"
|
613 |
+
else:
|
614 |
+
if hate_speech == ['Hate Speech']:
|
615 |
+
name = 'Hate Speech Detected'
|
616 |
+
elif hate_speech == ['Offensive Speech']:
|
617 |
+
name = 'Offensive Speech Detected'
|
618 |
+
elif hate_speech == ['No Hate and Offensive Speech']:
|
619 |
+
name = stripped
|
620 |
+
names.append(name)
|
621 |
+
return pd.DataFrame(names, columns=['Names'])
|
622 |
+
|
623 |
+
elif type == "Hollow Knight":
|
624 |
+
max_seq_len = 15
|
625 |
+
sp = spm.SentencePieceProcessor()
|
626 |
+
sp.load("models/hollow_knight_names.model")
|
627 |
+
amount = int(amount)
|
628 |
+
max_length = int(max_length)
|
629 |
+
|
630 |
+
names = []
|
631 |
+
|
632 |
+
# Define necessary variables
|
633 |
+
vocab_size = sp.GetPieceSize()
|
634 |
+
|
635 |
+
# Load TFLite model
|
636 |
+
interpreter = tf.lite.Interpreter(model_path="models/dungen_hollow_knight_model.tflite")
|
637 |
+
interpreter.allocate_tensors()
|
638 |
+
|
639 |
+
# Use the function to generate a name
|
640 |
+
for _ in range(amount):
|
641 |
+
generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature, max_seq_len=max_seq_len)
|
642 |
+
stripped = generated_name.strip()
|
643 |
+
hate_speech = detect_hate_speech(stripped)
|
644 |
+
profanity = detect_profanity([stripped], language='All')
|
645 |
+
name = ''
|
646 |
+
|
647 |
+
if len(profanity) > 0:
|
648 |
+
name = "Profanity Detected"
|
649 |
+
else:
|
650 |
+
if hate_speech == ['Hate Speech']:
|
651 |
+
name = 'Hate Speech Detected'
|
652 |
+
elif hate_speech == ['Offensive Speech']:
|
653 |
+
name = 'Offensive Speech Detected'
|
654 |
+
elif hate_speech == ['No Hate and Offensive Speech']:
|
655 |
+
name = stripped
|
656 |
+
names.append(name)
|
657 |
+
return pd.DataFrame(names, columns=['Names'])
|
658 |
+
|
659 |
+
elif type == "Assassin's Creed":
|
660 |
+
max_seq_len = 15
|
661 |
+
sp = spm.SentencePieceProcessor()
|
662 |
+
sp.load("models/dark_souls_names.model")
|
663 |
+
amount = int(amount)
|
664 |
+
max_length = int(max_length)
|
665 |
+
|
666 |
+
names = []
|
667 |
+
|
668 |
+
# Define necessary variables
|
669 |
+
vocab_size = sp.GetPieceSize()
|
670 |
+
|
671 |
+
# Load TFLite model
|
672 |
+
interpreter = tf.lite.Interpreter(model_path="models/dungen_assassins_creed_model.tflite")
|
673 |
+
interpreter.allocate_tensors()
|
674 |
+
|
675 |
+
# Use the function to generate a name
|
676 |
+
for _ in range(amount):
|
677 |
+
generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature, max_seq_len=max_seq_len)
|
678 |
+
stripped = generated_name.strip()
|
679 |
+
hate_speech = detect_hate_speech(stripped)
|
680 |
+
profanity = detect_profanity([stripped], language='All')
|
681 |
+
name = ''
|
682 |
+
|
683 |
+
if len(profanity) > 0:
|
684 |
+
name = "Profanity Detected"
|
685 |
+
else:
|
686 |
+
if hate_speech == ['Hate Speech']:
|
687 |
+
name = 'Hate Speech Detected'
|
688 |
+
elif hate_speech == ['Offensive Speech']:
|
689 |
+
name = 'Offensive Speech Detected'
|
690 |
+
elif hate_speech == ['No Hate and Offensive Speech']:
|
691 |
+
name = stripped
|
692 |
+
names.append(name)
|
693 |
+
return pd.DataFrame(names, columns=['Names'])
|
694 |
+
|
695 |
+
elif type == "Baldur's Gate":
|
696 |
+
max_seq_len = 14
|
697 |
+
sp = spm.SentencePieceProcessor()
|
698 |
+
sp.load("models/baldurs_gate_names.model")
|
699 |
+
amount = int(amount)
|
700 |
+
max_length = int(max_length)
|
701 |
+
|
702 |
+
names = []
|
703 |
+
|
704 |
+
# Define necessary variables
|
705 |
+
vocab_size = sp.GetPieceSize()
|
706 |
+
|
707 |
+
# Load TFLite model
|
708 |
+
interpreter = tf.lite.Interpreter(model_path="models/dungen_baldurs_gate_model.tflite")
|
709 |
+
interpreter.allocate_tensors()
|
710 |
+
|
711 |
+
# Use the function to generate a name
|
712 |
+
for _ in range(amount):
|
713 |
+
generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature, max_seq_len=max_seq_len)
|
714 |
+
stripped = generated_name.strip()
|
715 |
+
hate_speech = detect_hate_speech(stripped)
|
716 |
+
profanity = detect_profanity([stripped], language='All')
|
717 |
+
name = ''
|
718 |
+
|
719 |
+
if len(profanity) > 0:
|
720 |
+
name = "Profanity Detected"
|
721 |
+
else:
|
722 |
+
if hate_speech == ['Hate Speech']:
|
723 |
+
name = 'Hate Speech Detected'
|
724 |
+
elif hate_speech == ['Offensive Speech']:
|
725 |
+
name = 'Offensive Speech Detected'
|
726 |
+
elif hate_speech == ['No Hate and Offensive Speech']:
|
727 |
+
name = stripped
|
728 |
+
names.append(name)
|
729 |
+
return pd.DataFrame(names, columns=['Names'])
|
730 |
+
|
731 |
elif type == "Fantasy":
|
732 |
max_seq_len = 16 # For fantasy, 16
|
733 |
sp = spm.SentencePieceProcessor()
|
|
|
766 |
|
767 |
demo = gr.Interface(
|
768 |
fn=generateNames,
|
769 |
+
inputs=[gr.Radio(choices=["Terraria", "Skyrim", "Witcher", "WOW", "Minecraft", "Dark Souls", "Final Fantasy", "Elden Ring", "Zelda", "Dragon Age", "Fallout", "Darkest Dungeon", "Monster Hunter", "Bloodborne", "Hollow Knight", "Assassin's Creed", "Baldur's Gate", "Fantasy"], label="Choose a model for your request", value="Terraria"), gr.Slider(1,100, step=1, label='Amount of Names', info='How many names to generate, must be greater than 0'), gr.Slider(10, 60, value=30, step=1, label='Max Length', info='Max length of the generated word'), gr.Slider(0.1, 1, value=0.5, label='Temperature', info='Controls randomness of generation, higher values = more creative, lower values = more probalistic'), gr.Textbox('', label='Seed text (optional)', info='The starting text to begin with', max_lines=1, )],
|
770 |
outputs=[gr.Dataframe(row_count = (2, "dynamic"), col_count=(1, "fixed"), label="Generated Names", headers=["Names"])],
|
771 |
title='Dungen - Name Generator',
|
772 |
+
description='A fun game-inspired name generator. For an example of how to create, and train your model, like this one, head over to: https://github.com/Infinitode/OPEN-ARC/tree/main/Project-5-TWNG. There you will find our base model, the dataset we used, and implementation code in the form of a Jupyter Notebook (exported from Kaggle).'
|
773 |
)
|
774 |
|
775 |
demo.launch()
|