Spaces:
Running
Running
Infinitode Pty Ltd
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,31 @@ import numpy as np
|
|
6 |
import pandas as pd
|
7 |
import tensorflow as tf
|
8 |
|
9 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
# Get input and output tensors
|
11 |
input_details = interpreter.get_input_details()
|
12 |
output_details = interpreter.get_output_details()
|
@@ -83,11 +107,11 @@ def generateNames(type, amount, max_length=30, temperature=0.5, seed_text=""):
|
|
83 |
interpreter.allocate_tensors()
|
84 |
|
85 |
# Use the function to generate a name
|
86 |
-
# Assuming `vocab_size` and `sp` (SentencePiece processor) are defined elsewhere
|
87 |
for _ in range(amount):
|
88 |
-
generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature)
|
89 |
names.append(generated_name)
|
90 |
return pd.DataFrame(names, columns=['Names'])
|
|
|
91 |
elif type == "Skyrim":
|
92 |
max_seq_len = 13 # For skyrim = 13, for terraria = 12
|
93 |
sp = spm.SentencePieceProcessor()
|
@@ -105,9 +129,8 @@ def generateNames(type, amount, max_length=30, temperature=0.5, seed_text=""):
|
|
105 |
interpreter.allocate_tensors()
|
106 |
|
107 |
# Use the function to generate a name
|
108 |
-
# Assuming `vocab_size` and `sp` (SentencePiece processor) are defined elsewhere
|
109 |
for _ in range(amount):
|
110 |
-
generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature)
|
111 |
names.append(generated_name)
|
112 |
return pd.DataFrame(names, columns=['Names'])
|
113 |
|
@@ -119,30 +142,4 @@ demo = gr.Interface(
|
|
119 |
description='A fun game-inspired name generator. For an example of how to create, and train your model, similar to this one, head over to: https://github.com/infinitode/open-arc/tree/main/project-5-twng/. There you will find our base model, the dataset we used, and implementation code in the form of a Jupyter Notebook (exported from Kaggle).'
|
120 |
)
|
121 |
|
122 |
-
demo.launch()
|
123 |
-
|
124 |
-
def custom_pad_sequences(sequences, maxlen, padding='pre', value=0):
|
125 |
-
"""
|
126 |
-
Pads sequences to the same length.
|
127 |
-
|
128 |
-
:param sequences: List of lists, where each element is a sequence.
|
129 |
-
:param maxlen: Maximum length of all sequences.
|
130 |
-
:param padding: 'pre' or 'post', pad either before or after each sequence.
|
131 |
-
:param value: Float, padding value.
|
132 |
-
:return: Numpy array with dimensions (number_of_sequences, maxlen)
|
133 |
-
"""
|
134 |
-
maxlen = max_seq_len
|
135 |
-
|
136 |
-
padded_sequences = np.full((len(sequences), maxlen), value)
|
137 |
-
for i, seq in enumerate(sequences):
|
138 |
-
if padding == 'pre':
|
139 |
-
if len(seq) <= maxlen:
|
140 |
-
padded_sequences[i, -len(seq):] = seq
|
141 |
-
else:
|
142 |
-
padded_sequences[i, :] = seq[-maxlen:]
|
143 |
-
elif padding == 'post':
|
144 |
-
if len(seq) <= maxlen:
|
145 |
-
padded_sequences[i, :len(seq)] = seq
|
146 |
-
else:
|
147 |
-
padded_sequences[i, :] = seq[:maxlen]
|
148 |
-
return padded_sequences
|
|
|
6 |
import pandas as pd
|
7 |
import tensorflow as tf
|
8 |
|
9 |
+
def custom_pad_sequences(sequences, maxlen, padding='pre', value=0):
|
10 |
+
"""
|
11 |
+
Pads sequences to the same length.
|
12 |
+
|
13 |
+
:param sequences: List of lists, where each element is a sequence.
|
14 |
+
:param maxlen: Maximum length of all sequences.
|
15 |
+
:param padding: 'pre' or 'post', pad either before or after each sequence.
|
16 |
+
:param value: Float, padding value.
|
17 |
+
:return: Numpy array with dimensions (number_of_sequences, maxlen)
|
18 |
+
"""
|
19 |
+
padded_sequences = np.full((len(sequences), maxlen), value)
|
20 |
+
for i, seq in enumerate(sequences):
|
21 |
+
if padding == 'pre':
|
22 |
+
if len(seq) <= maxlen:
|
23 |
+
padded_sequences[i, -len(seq):] = seq
|
24 |
+
else:
|
25 |
+
padded_sequences[i, :] = seq[-maxlen:]
|
26 |
+
elif padding == 'post':
|
27 |
+
if len(seq) <= maxlen:
|
28 |
+
padded_sequences[i, :len(seq)] = seq
|
29 |
+
else:
|
30 |
+
padded_sequences[i, :] = seq[:maxlen]
|
31 |
+
return padded_sequences
|
32 |
+
|
33 |
+
def generate_random_name(interpreter, vocab_size, sp, max_length=10, temperature=0.5, seed_text="", max_seq_len=12):
|
34 |
# Get input and output tensors
|
35 |
input_details = interpreter.get_input_details()
|
36 |
output_details = interpreter.get_output_details()
|
|
|
107 |
interpreter.allocate_tensors()
|
108 |
|
109 |
# Use the function to generate a name
|
|
|
110 |
for _ in range(amount):
|
111 |
+
generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature, max_seq_len=max_seq_len)
|
112 |
names.append(generated_name)
|
113 |
return pd.DataFrame(names, columns=['Names'])
|
114 |
+
|
115 |
elif type == "Skyrim":
|
116 |
max_seq_len = 13 # For skyrim = 13, for terraria = 12
|
117 |
sp = spm.SentencePieceProcessor()
|
|
|
129 |
interpreter.allocate_tensors()
|
130 |
|
131 |
# Use the function to generate a name
|
|
|
132 |
for _ in range(amount):
|
133 |
+
generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature, max_seq_len=max_seq_len)
|
134 |
names.append(generated_name)
|
135 |
return pd.DataFrame(names, columns=['Names'])
|
136 |
|
|
|
142 |
description='A fun game-inspired name generator. For an example of how to create, and train your model, similar to this one, head over to: https://github.com/infinitode/open-arc/tree/main/project-5-twng/. There you will find our base model, the dataset we used, and implementation code in the form of a Jupyter Notebook (exported from Kaggle).'
|
143 |
)
|
144 |
|
145 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|