Spaces:
Sleeping
Sleeping
Infinitode Pty Ltd
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -3,41 +3,52 @@ import joblib
|
|
3 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
4 |
from sklearn.calibration import CalibratedClassifierCV
|
5 |
|
6 |
-
#
|
7 |
try:
|
8 |
model = joblib.load("helix-psa.pkl")
|
9 |
-
print("Model loaded successfully:", type(model))
|
10 |
-
except Exception as e:
|
11 |
-
print("Error loading model:", e)
|
12 |
-
|
13 |
-
try:
|
14 |
vectorizer = joblib.load("helix-psa-vectorizer.pkl")
|
15 |
-
print("
|
16 |
except Exception as e:
|
17 |
-
print("Error loading vectorizer:", e)
|
|
|
18 |
|
19 |
def predictPasswordStrength(password_input):
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
output =
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
demo = gr.Interface(
|
38 |
fn=predictPasswordStrength,
|
39 |
inputs=[gr.Textbox('Hello123', label='Password', info='The password to check the strength of', max_lines=1)],
|
40 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
title='Helix - Password Strength Analyzer',
|
42 |
description='A password strength analyzer, trained on over 10 million different passwords.'
|
43 |
)
|
|
|
3 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
4 |
from sklearn.calibration import CalibratedClassifierCV
|
5 |
|
6 |
+
# Load model and vectorizer
|
7 |
try:
|
8 |
model = joblib.load("helix-psa.pkl")
|
|
|
|
|
|
|
|
|
|
|
9 |
vectorizer = joblib.load("helix-psa-vectorizer.pkl")
|
10 |
+
print("Model and vectorizer loaded successfully.")
|
11 |
except Exception as e:
|
12 |
+
print("Error loading model or vectorizer:", e)
|
13 |
+
model, vectorizer = None, None # Assign None so we can check later
|
14 |
|
15 |
def predictPasswordStrength(password_input):
|
16 |
+
if model is None or vectorizer is None:
|
17 |
+
return [["Error: Model or vectorizer not loaded correctly.", "", ""]]
|
18 |
+
|
19 |
+
try:
|
20 |
+
password_tfidf = vectorizer.transform([password_input])
|
21 |
+
|
22 |
+
# Make predictions
|
23 |
+
predicted_proba = model.predict_proba(password_tfidf)
|
24 |
+
predicted_class = int(model.predict(password_tfidf)[0]) # Convert to Python integer
|
25 |
+
output = ''
|
26 |
+
if predicted_class == 0:
|
27 |
+
output = "The password is very weak..."
|
28 |
+
elif predicted_class == 1:
|
29 |
+
output = "The password is average."
|
30 |
+
else:
|
31 |
+
output = "The password is strong. But alas, it is not unbreakable."
|
32 |
+
|
33 |
+
confidence = float(predicted_proba.max())
|
34 |
+
|
35 |
+
# Return as a list of lists for DataFrame
|
36 |
+
return [[password_input, output, confidence]]
|
37 |
+
|
38 |
+
except Exception as e:
|
39 |
+
return [[f"Error during prediction: {e}", "", ""]]
|
40 |
|
41 |
demo = gr.Interface(
|
42 |
fn=predictPasswordStrength,
|
43 |
inputs=[gr.Textbox('Hello123', label='Password', info='The password to check the strength of', max_lines=1)],
|
44 |
+
outputs=[
|
45 |
+
gr.Dataframe(
|
46 |
+
row_count=(1, "fixed"),
|
47 |
+
col_count=(3, "fixed"),
|
48 |
+
headers=["Password", "Prediction", "Confidence"],
|
49 |
+
label="Password Strength Analysis"
|
50 |
+
)
|
51 |
+
],
|
52 |
title='Helix - Password Strength Analyzer',
|
53 |
description='A password strength analyzer, trained on over 10 million different passwords.'
|
54 |
)
|