Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -39,11 +39,26 @@ feature_options = {
|
|
39 |
|
40 |
def predict_mushroom(*features):
|
41 |
# Convert the feature names to a dictionary based on the order
|
42 |
-
feature_names = list(
|
43 |
-
numerical_features = {
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
input_df = pd.DataFrame([numerical_features])
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
return 'Poisonous' if prediction[0] == 1 else 'Edible'
|
48 |
|
49 |
demo = gr.Interface(
|
|
|
39 |
|
40 |
def predict_mushroom(*features):
|
41 |
# Convert the feature names to a dictionary based on the order
|
42 |
+
feature_names = list(mappings.keys())
|
43 |
+
numerical_features = {}
|
44 |
+
|
45 |
+
# Convert the string values to numerical values using the mappings
|
46 |
+
for i, feature in enumerate(features):
|
47 |
+
if feature in mappings[feature_names[i]]:
|
48 |
+
numerical_features[feature_names[i]] = mappings[feature_names[i]][feature]
|
49 |
+
else:
|
50 |
+
raise ValueError(f"Invalid value for feature '{feature_names[i]}': {feature}")
|
51 |
+
|
52 |
+
# Convert the numerical features into a DataFrame for the model
|
53 |
input_df = pd.DataFrame([numerical_features])
|
54 |
+
|
55 |
+
# Ensure the data is in the right format
|
56 |
+
try:
|
57 |
+
prediction = model.predict(input_df)
|
58 |
+
except Exception as e:
|
59 |
+
raise ValueError(f"Error during prediction: {e}")
|
60 |
+
|
61 |
+
# Return the classification result based on the model output
|
62 |
return 'Poisonous' if prediction[0] == 1 else 'Edible'
|
63 |
|
64 |
demo = gr.Interface(
|