Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import pandas as pd
|
| 5 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 6 |
+
from datasets import load_dataset
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
device = 'cpu'
|
| 10 |
+
|
| 11 |
+
@st.cache_resource
|
| 12 |
+
def get_model_and_tokenizer():
|
| 13 |
+
model_name = "FacebookAI/roberta-base"
|
| 14 |
+
num_labels = 157
|
| 15 |
+
|
| 16 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 17 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=num_labels)
|
| 18 |
+
|
| 19 |
+
chkp = torch.load("arxiv_roberta_9unfrozen_5scaleloss.pt", map_location=device)
|
| 20 |
+
model.load_state_dict(chkp['model'])
|
| 21 |
+
|
| 22 |
+
return model, tokenizer
|
| 23 |
+
|
| 24 |
+
@st.cache_data
|
| 25 |
+
def get_categories():
|
| 26 |
+
categories = load_dataset("TimSchopf/arxiv_categories", "arxiv_category_descriptions")
|
| 27 |
+
|
| 28 |
+
cat2id = dict((cat, id) for id, cat in enumerate(categories['arxiv_category_descriptions']['tag']))
|
| 29 |
+
id2cat = categories['arxiv_category_descriptions']['tag']
|
| 30 |
+
names = categories['arxiv_category_descriptions']['name']
|
| 31 |
+
|
| 32 |
+
return cat2id, id2cat, names
|
| 33 |
+
|
| 34 |
+
model, tokenizer = get_model_and_tokenizer()
|
| 35 |
+
cat2id, id2cat, cat_names = get_categories()
|
| 36 |
+
|
| 37 |
+
@torch.no_grad
|
| 38 |
+
def predict_and_decode(model, title='', abstract=''):
|
| 39 |
+
model.eval()
|
| 40 |
+
|
| 41 |
+
inputs = tokenizer(title, abstract, return_tensors='pt', truncation=True, max_length=512).to(device)
|
| 42 |
+
logits = model(**inputs)['logits'][0].cpu()
|
| 43 |
+
|
| 44 |
+
df = pd.DataFrame([
|
| 45 |
+
(id2cat[cat_id], cat_names[cat_id], prob.item())
|
| 46 |
+
for cat_id, prob in enumerate(F.sigmoid(logits))
|
| 47 |
+
], columns=("tag", "name", "probability"))
|
| 48 |
+
df.sort_values(by="probability", ascending=False, inplace=True)
|
| 49 |
+
|
| 50 |
+
return df.reset_index(drop=True)
|
| 51 |
+
|
| 52 |
+
st.header("Paper Category Classifier")
|
| 53 |
+
st.text("Input title and/or abstract of a scientific paper, and get classification according to arxiv.org categories")
|
| 54 |
+
|
| 55 |
+
title_default = "Attention Is All You Need"
|
| 56 |
+
abstract_default = (
|
| 57 |
+
"The dominant sequence transduction models are based on complex recurrent or convolutional neural networks "
|
| 58 |
+
"in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through "
|
| 59 |
+
"an attention mechanism. We propose a new simple network architecture, the Transformer..."
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
line_height = 34
|
| 63 |
+
n_lines = 10
|
| 64 |
+
title = st.text_input("Paper title", value=title_default, help="Type in paper's title")
|
| 65 |
+
abstract = st.text_area("Paper abstract", value=abstract_default, height=line_height*n_lines, help="Type in paper's abstract")
|
| 66 |
+
|
| 67 |
+
result = predict_and_decode(model, title=title, abstract=abstract)
|
| 68 |
+
|
| 69 |
+
cnt = st.container(border=True)
|
| 70 |
+
with cnt:
|
| 71 |
+
st.markdown("#### Top category")
|
| 72 |
+
st.markdown(f"**{result.tag[0]}** -- {result.name[0]}")
|
| 73 |
+
st.markdown(f"Probability: {result.probability[0]*100:.2f}%")
|
| 74 |
+
|
| 75 |
+
threshold = 0.55
|
| 76 |
+
st.text("Other top categories:")
|
| 77 |
+
max_len = min(max(1, sum(result.iloc[1:].probability > threshold)), 5)
|
| 78 |
+
|
| 79 |
+
def format_p(example):
|
| 80 |
+
example.probability = f"{example.probability * 100 :.2f}%"
|
| 81 |
+
return example
|
| 82 |
+
st.table(result.iloc[1:1 + max_len].apply(format_p, axis=1))
|