multimodalart HF Staff commited on
Commit
b22da46
·
verified ·
1 Parent(s): efb3f81

Upload __init__.py

Browse files
Files changed (1) hide show
  1. controlnet_aux/anyline/__init__.py +118 -0
controlnet_aux/anyline/__init__.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # code based in https://github.com/TheMistoAI/ComfyUI-Anyline/blob/main/anyline.py
2
+ import os
3
+
4
+ import cv2
5
+ import numpy as np
6
+ import torch
7
+ from einops import rearrange
8
+ from huggingface_hub import hf_hub_download
9
+ from PIL import Image
10
+ from skimage import morphology
11
+
12
+ from ..teed.ted import TED
13
+ from ..util import HWC3, resize_image, safe_step
14
+
15
+
16
+ class AnylineDetector:
17
+ def __init__(self, model):
18
+ self.model = model
19
+
20
+ @classmethod
21
+ def from_pretrained(cls, pretrained_model_or_path, filename=None, subfolder=None):
22
+ if os.path.isdir(pretrained_model_or_path):
23
+ model_path = os.path.join(pretrained_model_or_path, filename)
24
+ else:
25
+ model_path = hf_hub_download(
26
+ pretrained_model_or_path, filename, subfolder=subfolder
27
+ )
28
+
29
+ model = TED()
30
+ model.load_state_dict(torch.load(model_path, map_location="cpu"))
31
+
32
+ return cls(model)
33
+
34
+ def to(self, device):
35
+ self.model.to(device)
36
+ return self
37
+
38
+ def __call__(
39
+ self,
40
+ input_image,
41
+ detect_resolution=1280,
42
+ guassian_sigma=2.0,
43
+ intensity_threshold=3,
44
+ output_type="pil",
45
+ ):
46
+ device = next(iter(self.model.parameters())).device
47
+
48
+ if not isinstance(input_image, np.ndarray):
49
+ input_image = np.array(input_image, dtype=np.uint8)
50
+ output_type = output_type or "pil"
51
+ else:
52
+ output_type = output_type or "np"
53
+
54
+ original_height, original_width, _ = input_image.shape
55
+
56
+ input_image = HWC3(input_image)
57
+ input_image = resize_image(input_image, detect_resolution)
58
+
59
+ assert input_image.ndim == 3
60
+ height, width, _ = input_image.shape
61
+ with torch.no_grad():
62
+ image_teed = torch.from_numpy(input_image.copy()).float().to(device)
63
+ image_teed = rearrange(image_teed, "h w c -> 1 c h w")
64
+ edges = self.model(image_teed)
65
+ edges = [e.detach().cpu().numpy().astype(np.float32)[0, 0] for e in edges]
66
+ edges = [
67
+ cv2.resize(e, (width, height), interpolation=cv2.INTER_LINEAR)
68
+ for e in edges
69
+ ]
70
+ edges = np.stack(edges, axis=2)
71
+ edge = 1 / (1 + np.exp(-np.mean(edges, axis=2).astype(np.float64)))
72
+ edge = safe_step(edge, 2)
73
+ edge = (edge * 255.0).clip(0, 255).astype(np.uint8)
74
+
75
+ mteed_result = edge
76
+ mteed_result = HWC3(mteed_result)
77
+
78
+ x = input_image.astype(np.float32)
79
+ g = cv2.GaussianBlur(x, (0, 0), guassian_sigma)
80
+ intensity = np.min(g - x, axis=2).clip(0, 255)
81
+ intensity /= max(16, np.median(intensity[intensity > intensity_threshold]))
82
+ intensity *= 127
83
+ lineart_result = intensity.clip(0, 255).astype(np.uint8)
84
+
85
+ lineart_result = HWC3(lineart_result)
86
+
87
+ lineart_result = self.get_intensity_mask(
88
+ lineart_result, lower_bound=0, upper_bound=255
89
+ )
90
+
91
+ cleaned = morphology.remove_small_objects(
92
+ lineart_result.astype(bool), min_size=36, connectivity=1
93
+ )
94
+ lineart_result = lineart_result * cleaned
95
+ final_result = self.combine_layers(mteed_result, lineart_result)
96
+
97
+ final_result = cv2.resize(
98
+ final_result,
99
+ (original_width, original_height),
100
+ interpolation=cv2.INTER_LINEAR,
101
+ )
102
+
103
+ if output_type == "pil":
104
+ final_result = Image.fromarray(final_result)
105
+
106
+ return final_result
107
+
108
+ def get_intensity_mask(self, image_array, lower_bound, upper_bound):
109
+ mask = image_array[:, :, 0]
110
+ mask = np.where((mask >= lower_bound) & (mask <= upper_bound), mask, 0)
111
+ mask = np.expand_dims(mask, 2).repeat(3, axis=2)
112
+ return mask
113
+
114
+ def combine_layers(self, base_layer, top_layer):
115
+ mask = top_layer.astype(bool)
116
+ temp = 1 - (1 - top_layer) * (1 - base_layer)
117
+ result = base_layer * (~mask) + temp * mask
118
+ return result