Spaces:
Sleeping
Sleeping
File size: 11,494 Bytes
712d204 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
import gradio as gr
from pygame import Vector2
import time
import threading
import queue
from simulator_env import StreamableSimulation, SwarmAgent, MyConfig, MyWindow
import speech_processing
import text_processing
import safety_module
import bt_generator
from pathlib import Path
BASE = Path(__file__).parent
class GradioStreamer:
_instance = None
def __new__(cls):
if cls._instance is None:
cls._instance = super(GradioStreamer, cls).__new__(cls)
cls._instance.initialized = False
return cls._instance
def __init__(self):
if not self.initialized:
self.latest_frame = None
self.running = True
self.sim = None
self.sim_thread = None
self.initialized = True
self.quit = False
def update_frame(self, frame):
self.latest_frame = frame
def run_simulation(self):
# Instantiate simulation and agents here:
nest_pos = Vector2(450, 400)
target_pos = Vector2(300, 200)
agent_images = ["white.png", "green.png", "red circle.png"]
image_paths = [str(BASE / "images" / fname) for fname in agent_images]
# agent_images_paths = ["./images/white.png", "./images/green.png", "./images/red circle.png"]
config = MyConfig(radius=25, visualise_chunks=True, movement_speed=2.0)
self.sim = StreamableSimulation(config=config)
loaded_agent_images = self.sim._load_image(image_paths)
# loaded_agent_images = self.sim._load_image(agent_images_paths)
# Create agents (each agent builds its own BT in its __init__)
for _ in range(50):
agents_pos = Vector2(450, 400)
agent = SwarmAgent(
images=loaded_agent_images,
simulation=self.sim,
pos=agents_pos,
nest_pos=nest_pos,
target_pos=target_pos
)
self.sim._agents.add(agent)
self.sim._all.add(agent)
# (Optionally spawn obstacles and sites.)
self.sim.spawn_obstacle(str(BASE / "images" / "rect_obst.png"), 350, 50)
self.sim.spawn_obstacle(str(BASE / "images" / "rect_obst (1).png"), 100, 350)
self.sim.spawn_site(str(BASE / "images" / "rect.png"), 300, 200)
self.sim.spawn_site(str(BASE / "images" / "nest.png"), 450, 400)
start_time = time.time() # Record the start time
while self.running:
self.sim.tick()
if not self.sim.frame_queue.empty():
frame = self.sim.frame_queue.get()
self.update_frame(frame)
time.sleep(1/10) # Maintain a frame rate of ~30 FPS
# Stop after 2 minute
if time.time() - start_time >= 120:
print("Simulation stopped after 1 minute.")
break
def stream(self):
while True:
if self.sim is not None and self.latest_frame is not None:
yield self.latest_frame
else:
# Optionally, yield a blank image or None.
yield None
time.sleep(1/30)
def start_simulation(self):
"""Start the simulation, creating a new thread if necessary."""
if not self.sim_thread or not self.sim_thread.is_alive():
self.running = True
self.quit = False
self.latest_frame = None
self.sim_thread = threading.Thread(target=self.run_simulation, daemon=True)
self.sim_thread.start()
def clear_frame_queue(self):
if self.sim:
try:
while True:
self.sim.frame_queue.get_nowait()
except queue.Empty:
pass
def stop_simulation(self):
print("Stopping Simulation...")
self.running = False
self.quit = True
if self.sim:
for agent in self.sim._agents:
agent.bt_active = False
self.sim.running = False
self.sim.stop()
self.clear_frame_queue()
self.sim = None
if self.sim_thread and self.sim_thread.is_alive():
self.sim_thread.join(timeout=2)
print("Simulation thread terminated.")
self.latest_frame = None # Clear the displayed frame
print("Simulation stopped successfully.")
def stop_gradio_interface():
raise Exception("Simulation stopped!")
def create_gradio_interface():
streamer = GradioStreamer()
def on_translate_or_process():
streamer.start_simulation()
return gr.update(visible=True)
def on_stop():
print("Simulation on_stop")
streamer.stop_simulation()
return gr.update(visible=False)
behaviors = bt_generator.call_behaviors()
formatted_behaviors = "\n".join(
f"- **{name}**: {doc.split('Returns:')[0].strip()}"
for name, doc in sorted(
behaviors.items(),
key=lambda item: item[0].lower()
)
)
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown(
"""
# ๐ **SwarmChat:** Enabling HumanโSwarm Interaction and Robot Control via Natural Language
Easily talk to virtual robots, and see the result live.
"""
)
gr.Markdown(
"""
**How it works**
1. Speak or type a task in *any EU language* (e.g. โFind Food, then change color to greenโ).
2. Press **Start** to launch the simulator. Use **Stop** to halt & reset.
3. SwarmChat translates your command, runs a safety check, and auto-builds a behaviour tree (BT).
> The BT XML is shown on the right so you can copy / save it for real robots.
"""
)
with gr.Tabs():
# Tab for microphone input
with gr.Tab("Microphone Input"):
gr.Markdown("## ๐๏ธ Voice mode")
gr.Markdown("""
Use your microphone to record audio instructions for the swarm. The system translates them into a robot-executable BT.
""")
with gr.Row():
with gr.Column():
microphone_input = gr.Audio(sources=["microphone"], type="filepath", label="๐๏ธ Record Audio")
safety_checkbox = gr.Checkbox(label="Turn off Safety Model")
with gr.Column():
output_text_audio = gr.Textbox(label="๐ Translated Instructions to English" )
safty_check_audio = gr.Textbox(label="โ
Safety Check")
translate_button_audio = gr.Button("Start")
simulation_output = gr.Image(label="Live Stream", streaming=True, visible=False)
stop_button = gr.Button("Stop")
with gr.Row():
with gr.Column():
gr.Markdown(f"""**๐ The available behaviours so far.**\n{formatted_behaviors}\n\nThese are the only low-level actions/conditions the model is allowed to use yet.""")
with gr.Column():
generated_BT_audio = gr.Textbox(label="Generated behavior tree")
translate_button_audio.click(
fn=speech_processing.translate_audio,
inputs=microphone_input,
outputs=output_text_audio
).then(
fn=safety_module.check_safety,
inputs=[output_text_audio,safety_checkbox],
outputs=safty_check_audio
).then(
fn=lambda x: x if x == "Safe" else stop_gradio_interface(),
inputs=safty_check_audio,
outputs=None
).success(
fn=bt_generator.generate_behavior_tree,
# fn=test_LLM_generate_BT,
inputs=output_text_audio,
outputs=generated_BT_audio
).success(
fn=on_translate_or_process,
outputs=simulation_output
)
stop_button.click(fn=on_stop,outputs=simulation_output)
demo.load(fn=streamer.stream, outputs=simulation_output)
# Tab for text input
with gr.Tab("๐ Text Input"):
gr.Markdown("## ๐ Text mode")
gr.Markdown("""
Enter text-based instructions for the swarm. The system translates them into a robot-executable BT.
""")
with gr.Row():
with gr.Column():
text_input = gr.Textbox(lines=4, placeholder="Enter your instructions here...", label="๐ Input Text")
safety_checkbox_text = gr.Checkbox(label="Turn off Safety Model")
with gr.Column():
output_text_text = gr.Textbox(label="๐ Translated Instructions to English", lines=2)
safty_check_text = gr.Textbox(label="โ
Safety Check")
process_button_text = gr.Button("Start")
simulation_output = gr.Image(label="Live Stream", streaming=True, visible=False)
stop_button = gr.Button("Stop")
with gr.Row():
with gr.Column():
gr.Markdown(f"""**๐ The available behaviours so far.**\n{formatted_behaviors}\n\nThese are the only low-level actions/conditions the model is allowed to use yet.""")
with gr.Column():
generated_BT_text = gr.Textbox(label="Generated behavior tree")
process_button_text.click(
fn=text_processing.translate_text,
inputs=text_input,
outputs=output_text_text
).then(
fn=safety_module.check_safety,
inputs=[output_text_text,safety_checkbox_text],
outputs=safty_check_text
).then(
fn=lambda x: x if x == "Safe" else stop_gradio_interface(),
inputs=safty_check_text,
outputs=None
).success(
fn=bt_generator.generate_behavior_tree,
# fn=test_LLM_generate_BT,
inputs=output_text_text,
outputs=generated_BT_text
).success(
fn=on_translate_or_process,
outputs=simulation_output
)
stop_button.click(fn=on_stop,outputs=simulation_output)
demo.load(fn=streamer.stream, outputs=simulation_output)
return demo
if __name__ == "__main__":
demo = create_gradio_interface()
try:
demo.launch(server_port=7860, server_name="0.0.0.0", share=True)
finally:
streamer = GradioStreamer()
streamer.stop_simulation()
|