Spaces:
Runtime error
Runtime error
Upload main.py
Browse files
main.py
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from stocks import *
|
| 2 |
+
from functions import *
|
| 3 |
+
from datetime import datetime
|
| 4 |
+
import streamlit as st
|
| 5 |
+
|
| 6 |
+
st.set_page_config(layout="wide")
|
| 7 |
+
|
| 8 |
+
st.title("Tech Stocks Trading Assistant")
|
| 9 |
+
|
| 10 |
+
left_column, right_column = st.columns(2)
|
| 11 |
+
|
| 12 |
+
with left_column:
|
| 13 |
+
|
| 14 |
+
all_tickers = {
|
| 15 |
+
"Apple":"AAPL",
|
| 16 |
+
"Microsoft":"MSFT",
|
| 17 |
+
"Nvidia":"NVDA",
|
| 18 |
+
"Paypal":"PYPL",
|
| 19 |
+
"Amazon":"AMZN",
|
| 20 |
+
"Spotify":"SPOT",
|
| 21 |
+
"Twitter":"TWTR",
|
| 22 |
+
"AirBnB":"ABNB",
|
| 23 |
+
"Uber":"UBER",
|
| 24 |
+
"Google":"GOOG"
|
| 25 |
+
}
|
| 26 |
+
|
| 27 |
+
st.subheader("Technical Analysis Methods")
|
| 28 |
+
option_name = st.selectbox('Choose a stock:', all_tickers.keys())
|
| 29 |
+
option_ticker = all_tickers[option_name]
|
| 30 |
+
execution_timestamp = datetime.now()
|
| 31 |
+
'You selected: ', option_name, "(",option_ticker,")"
|
| 32 |
+
'Last execution:', execution_timestamp
|
| 33 |
+
|
| 34 |
+
s = Stock_Data()
|
| 35 |
+
t = s.Ticker(tick=option_ticker)
|
| 36 |
+
|
| 37 |
+
m = Models()
|
| 38 |
+
|
| 39 |
+
with st.spinner('Loading stock data...'):
|
| 40 |
+
|
| 41 |
+
technical_analysis_methods_outputs = {
|
| 42 |
+
'Technical Analysis Method': [
|
| 43 |
+
'Bollinger Bands (20 days & 2 stand. deviations)',
|
| 44 |
+
'Bollinger Bands (10 days & 1.5 stand. deviations)',
|
| 45 |
+
'Bollinger Bands (50 days & 3 stand. deviations)',
|
| 46 |
+
'Moving Average Convergence Divergence (MACD)'
|
| 47 |
+
],
|
| 48 |
+
'Outlook': [
|
| 49 |
+
m.bollinger_bands_20d_2std(t),
|
| 50 |
+
m.bollinger_bands_10d_1point5std(t),
|
| 51 |
+
m.bollinger_bands_50d_3std(t),
|
| 52 |
+
m.MACD(t)
|
| 53 |
+
],
|
| 54 |
+
'Timeframe of Method': [
|
| 55 |
+
"Medium-term",
|
| 56 |
+
"Short-term",
|
| 57 |
+
"Long-term",
|
| 58 |
+
"Short-term"
|
| 59 |
+
]
|
| 60 |
+
}
|
| 61 |
+
|
| 62 |
+
df = pd.DataFrame(technical_analysis_methods_outputs)
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def color_survived(val):
|
| 66 |
+
color = ""
|
| 67 |
+
if (val=="Sell" or val=="Downtrend and sell signal" or val=="Downtrend and no signal"):
|
| 68 |
+
color="#EE3B3B"
|
| 69 |
+
elif (val=="Buy" or val=="Uptrend and buy signal" or val=="Uptrend and no signal"):
|
| 70 |
+
color="#3D9140"
|
| 71 |
+
else:
|
| 72 |
+
color="#CD950C"
|
| 73 |
+
return f'background-color: {color}'
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
st.table(df.sort_values(['Timeframe of Method'], ascending=False).
|
| 77 |
+
reset_index(drop=True).style.applymap(color_survived, subset=['Outlook']))
|
| 78 |
+
|
| 79 |
+
with right_column:
|
| 80 |
+
|
| 81 |
+
st.subheader("FinBERT-based Sentiment Analysis")
|
| 82 |
+
|
| 83 |
+
with st.spinner("Connecting with www.marketwatch.com..."):
|
| 84 |
+
st.plotly_chart(m.finbert_headlines_sentiment(t)["fig"])
|
| 85 |
+
"Current sentiment:", m.finbert_headlines_sentiment(t)["current_sentiment"], "%"
|
| 86 |
+
|
| 87 |
+
st.subheader("LSTM-based 7-day stock price prediction model")
|
| 88 |
+
|
| 89 |
+
with st.spinner("Compiling LSTM model.."):
|
| 90 |
+
st.plotly_chart(m.LSTM_7_days_price_predictor(t))
|
| 91 |
+
|