Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from sentence_transformers import SentenceTransformer
|
3 |
+
|
4 |
+
# Load the multilingual embedding model
|
5 |
+
model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
|
6 |
+
|
7 |
+
# Define a function to embed text
|
8 |
+
def embed(text: str):
|
9 |
+
if not text.strip():
|
10 |
+
return {"error": "Input text is empty."}
|
11 |
+
embedding = model.encode([text])[0] # Get the embedding vector
|
12 |
+
return {"embedding": embedding.tolist()}
|
13 |
+
|
14 |
+
# Launch Gradio interface
|
15 |
+
demo = gr.Interface(
|
16 |
+
fn=embed,
|
17 |
+
inputs=gr.Textbox(lines=3, label="Input Text"),
|
18 |
+
outputs="json",
|
19 |
+
title="Multilingual Text Embedder",
|
20 |
+
description="Uses paraphrase-multilingual-MiniLM-L12-v2 to convert text into embeddings"
|
21 |
+
)
|
22 |
+
|
23 |
+
demo.launch()
|